{ [Info,T:Type]. [f:T  ]. [es:EO+(Info)]. [lb:]. [X:EClass(T)].
  [e:E(X)].
    ((maximum f[v]  lb with v from X)(e)
    = imax-list([lb / map(v.f[v];X((X)(e)))])) }

{ Proof }



Definitions occuring in Statement :  imax-class: (maximum f[v]  lb with v from X) es-interface-predecessors: (X)(e) eclass-vals: X(L) es-E-interface: E(X) eclass-val: X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) map: map(f;as) uall: [x:A]. B[x] so_apply: x[s] lambda: x.A[x] function: x:A  B[x] cons: [car / cdr] int: universe: Type equal: s = t imax-list: imax-list(L)
Definitions :  uall: [x:A]. B[x] imax-class: (maximum f[v]  lb with v from X) imax-list: imax-list(L) eclass-vals: X(L) member: t  T top: Top assert: b btrue: tt all: x:A. B[x] ifthenelse: if b then t else f fi  true: True hd: hd(l) tl: tl(l) compose: f o g subtype: S  T so_lambda: x y.t[x; y] so_apply: x[s] es-E-interface: E(X) uimplies: b supposing a sq_type: SQType(T) implies: P  Q guard: {T} so_apply: x[s1;s2]
Lemmas :  es-interface-accum-val is-interface-accum subtype_base_sq bool_wf bool_subtype_base map-map es-interface-predecessors_wf top_wf Id_wf es-loc_wf event-ordering+_inc es-E-interface_wf eclass_wf es-E_wf event-ordering+_wf assert_elim in-eclass_wf list_accum-map es-interface-top list_accum_wf imax_wf eclass-val_wf

\mforall{}[Info,T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[es:EO+(Info)].  \mforall{}[lb:\mBbbZ{}].  \mforall{}[X:EClass(T)].  \mforall{}[e:E(X)].
    ((maximum  f[v]  \mgeq{}  lb  with  v  from  X)(e)  =  imax-list([lb  /  map(\mlambda{}v.f[v];X(\mleq{}(X)(e)))]))


Date html generated: 2011_08_16-PM-04_36_18
Last ObjectModification: 2011_06_20-AM-00_59_10

Home Index