{ [Info:Type]
    X:EClass(Top). es:EO+(Info). e:E.
      (e  prior(X)  e':E. ((e' <loc e)  (e'  X))) }

{ Proof }



Definitions occuring in Statement :  es-prior-interface: prior(X) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E assert: b uall: [x:A]. B[x] top: Top all: x:A. B[x] exists: x:A. B[x] iff: P  Q and: P  Q universe: Type
Definitions :  void: Void inr: inr x  false: False bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} inl: inl x  axiom: Ax rev_implies: P  Q true: True bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) cand: A c B atom: Atom es-base-E: es-base-E(es) token: "$token" infix_ap: x f y es-causl: (e < e') fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  less_than: a < b uimplies: b supposing a uiff: uiff(P;Q) bool: not: A sq_exists: x:{A| B[x]} union: left + right or: P  Q can-apply: can-apply(f;x) assert: b es-local-pred: last(P) local-pred-class: local-pred-class(P) in-eclass: e  X subtype_rel: A r B bag: bag(T) prop: real: grp_car: |g| int: nat: es-locl: (e <loc e') es-prior-interface: prior(X) top: Top subtype: S  T so_lambda: x y.t[x; y] event_ordering: EO iff: P  Q and: P  Q implies: P  Q exists: x:A. B[x] product: x:A  B[x] set: {x:A| B[x]}  event-ordering+: EO+(Info) eclass: EClass(A[eo; e]) universe: Type es-E: E isect: x:A. B[x] member: t  T equal: s = t all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  RepUR: Error :RepUR,  D: Error :D,  natural_number: $n apply: f a bag-size: bag-size(bs) eq_int: (i = j) lambda: x.A[x] Unfold: Error :Unfold
Lemmas :  es-E_wf es-locl_wf not_wf assert_wf event-ordering+_wf bag_wf top_wf member_wf nat_wf bag-size_wf eq_int_wf es-local-pred_wf es-local-pred-property event-ordering+_inc eclass_wf bool_wf es-base-E_wf subtype_rel_self true_wf iff_wf false_wf

\mforall{}[Info:Type]
    \mforall{}X:EClass(Top).  \mforall{}es:EO+(Info).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  prior(X)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}e':E.  ((e'  <loc  e)  \mwedge{}  (\muparrow{}e'  \mmember{}\msubb{}  X)))


Date html generated: 2011_08_16-PM-04_45_08
Last ObjectModification: 2011_06_20-AM-01_03_39

Home Index