{ [Info:Type]
    es:EO+(Info)
      [T:Type]
        X:EClass(T). e:E.
          (e  (X)'  e':E. ((e' <loc e)  (e'  X))) }

{ Proof }



Definitions occuring in Statement :  es-prior-val: (X)' in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E assert: b uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: P  Q and: P  Q universe: Type
Definitions :  cand: A c B intensional-universe: IType atom: Atom es-base-E: es-base-E(es) token: "$token" quotient: x,y:A//B[x; y] bag: bag(T) void: Void axiom: Ax natural_number: $n es-locl: (e <loc e') rev_implies: P  Q true: True fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  less_than: a < b subtype_rel: A r B es-E-interface: E(X) top: Top bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) false: False limited-type: LimitedType prop: bfalse: ff btrue: tt decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  uimplies: b supposing a uiff: uiff(P;Q) eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b apply: f a infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') not: A eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q es-prior-interface: prior(X) bnot: b int: unit: Unit union: left + right bool: assert: b in-eclass: e  X es-prior-val: (X)' lambda: x.A[x] subtype: S  T uall: [x:A]. B[x] isect: x:A. B[x] universe: Type so_lambda: x y.t[x; y] all: x:A. B[x] event-ordering+: EO+(Info) event_ordering: EO iff: P  Q and: P  Q implies: P  Q function: x:A  B[x] exists: x:A. B[x] product: x:A  B[x] es-E: E set: {x:A| B[x]}  eclass: EClass(A[eo; e]) member: t  T equal: s = t MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  Unfold: Error :Unfold,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA
Lemmas :  in-eclass_wf assert_wf es-locl_wf false_wf es-E_wf es-interface-top subtype_rel_wf eclass_wf member_wf true_wf bool_wf es-prior-interface_wf1 not_wf bnot_wf assert_of_bnot eqff_to_assert uiff_transitivity eqtt_to_assert event-ordering+_wf event-ordering+_inc es-prior-interface_wf es-interface-subtype_rel2 es-E-interface_wf es-base-E_wf subtype_rel_self top_wf es-is-prior-interface not_functionality_wrt_iff intensional-universe_wf

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}[T:Type].  \mforall{}X:EClass(T).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  (X)'  \mLeftarrow{}{}\mRightarrow{}  \mexists{}e':E.  ((e'  <loc  e)  \mwedge{}  (\muparrow{}e'  \mmember{}\msubb{}  X)))


Date html generated: 2011_08_16-PM-05_05_29
Last ObjectModification: 2011_06_20-AM-01_10_03

Home Index