{ [Info:Type]
    es:EO+(Info). X:EClass(Top). e:E(X). L:E(X) List.
      (L  (X)(e)
       (null(L))
           ((null(L))
             (p:E(X). (p loc e   (L = (X)(p))  (p = last(L)))))) }

{ Proof }



Definitions occuring in Statement :  es-interface-predecessors: (X)(e) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-le: e loc e'  es-E: E null: null(as) assert: b uall: [x:A]. B[x] top: Top all: x:A. B[x] exists: x:A. B[x] iff: P  Q not: A or: P  Q and: P  Q list: type List universe: Type equal: s = t iseg: l1  l2 last: last(L)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] iff: P  Q or: P  Q and: P  Q exists: x:A. B[x] implies: P  Q rev_implies: P  Q member: t  T prop: cand: A c B guard: {T} subtype: S  T so_lambda: x y.t[x; y] top: Top not: A false: False es-E-interface: E(X) assert: b trans: Trans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) set-equal: set-equal(T;x;y) btrue: tt ifthenelse: if b then t else f fi  true: True so_lambda: x.t[x] irrefl: Irrefl(T;x,y.E[x; y]) label: ...$L... t es-le: e loc e'  decidable: Dec(P) uimplies: b supposing a so_apply: x[s1;s2] sq_type: SQType(T) so_apply: x[s] null: null(as) bfalse: ff
Lemmas :  decidable__assert null_wf3 not_wf assert_wf iseg_wf es-E-interface_wf es-interface-predecessors_wf Id_wf es-loc_wf es-le_wf event-ordering+_inc es-E_wf last_wf eclass_wf top_wf event-ordering+_wf member-interface-predecessors last_member iseg_member es-interface-predecessors-sorted-by-locl iseg-sorted-by es-locl_wf sorted-by-strict-unique es-locl_transitivity2 es-le_weakening es-locl_irreflexivity subtype_base_sq bool_wf bool_subtype_base in-eclass_wf es-locl-antireflexive property-from-l_member sq_stable__equal l_member_wf assert_elim member-iseg-sorted-by decidable__equal_es-E-interface es-le_transitivity nil_iseg length_wf_nat nat_wf member_wf es-interface-predecessors-iseg

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}e:E(X).  \mforall{}L:E(X)  List.
        (L  \mleq{}  \mleq{}(X)(e)
        \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}null(L))  \mvee{}  ((\mneg{}\muparrow{}null(L))  \mwedge{}  (\mexists{}p:E(X).  (p  \mleq{}loc  e    \mwedge{}  (L  =  \mleq{}(X)(p))  \mwedge{}  (p  =  last(L))))))


Date html generated: 2011_08_16-PM-05_21_57
Last ObjectModification: 2011_06_20-AM-01_21_44

Home Index