{ [Info:Type]
    es:EO+(Info). X:EClass(Top). e,e':E(X).
      ((X)(e')  (X)(e)  e' loc e ) }

{ Proof }



Definitions occuring in Statement :  es-interface-predecessors: (X)(e) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-le: e loc e'  uall: [x:A]. B[x] top: Top all: x:A. B[x] iff: P  Q universe: Type iseg: l1  l2
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] member: t  T nat: implies: P  Q guard: {T} prop: so_lambda: x y.t[x; y] ge: i  j  le: A  B not: A false: False iff: P  Q es-le: e loc e'  and: P  Q rev_implies: P  Q or: P  Q subtype: S  T top: Top assert: b cand: A c B label: ...$L... t btrue: tt ifthenelse: if b then t else f fi  true: True es-E-interface: E(X) exists: x:A. B[x] bfalse: ff squash: T null: null(as) band: p  q length: ||as|| last: last(L) select: l[i] ycomb: Y le_int: i z j bnot: b lt_int: i <z j strongwellfounded: SWellFounded(R[x; y]) so_apply: x[s1;s2] decidable: Dec(P) uimplies: b supposing a sq_type: SQType(T) bool: unit: Unit uiff: uiff(P;Q) it:
Lemmas :  es-causl-swellfnd event-ordering+_inc nat_wf le_wf es-E-interface_wf eclass_wf top_wf es-E_wf event-ordering+_wf es-causl_wf nat_properties ge_wf decidable__equal_es-E-interface es-locl_wf iseg_wf es-interface-predecessors_wf Id_wf es-loc_wf iseg_weakening es-le_wf iff_wf es-le-prior-interface-val assert_wf in-eclass_wf es-prior-interface_wf es-interface-subtype_rel2 eclass-val_wf2 es-E-interface-subtype_rel subtype_base_sq bool_wf bool_subtype_base assert_elim es-is-prior-interface assert_witness es-prior-interface-val es-locl_transitivity1 es-le_weakening iff_functionality_wrt_iff not_wf bnot_wf squash_wf true_wf es-interface-predecessors-step iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot es-prior-interface-causl append_wf length_wf1 iseg_append_iff null_wf3 null_append false_wf last_wf not_assert_elim last_append pos_length2 cons_iseg iseg_length non_neg_length length_wf_nat length_cons es-interface-predecessors-last iseg_member last_member l_member_wf member_singleton

\mforall{}[Info:Type].  \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}e,e':E(X).    (\mleq{}(X)(e')  \mleq{}  \mleq{}(X)(e)  \mLeftarrow{}{}\mRightarrow{}  e'  \mleq{}loc  e  )


Date html generated: 2011_08_16-PM-05_18_11
Last ObjectModification: 2011_06_20-AM-01_19_43

Home Index