{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [e:E(X)].
    ((X)(e) = if e  prior(X) then (X)(prior(X)(e)) @ [e] else [e] fi ) }

{ Proof }



Definitions occuring in Statement :  es-prior-interface: prior(X) es-interface-predecessors: (X)(e) es-E-interface: E(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) Id: Id append: as @ bs ifthenelse: if b then t else f fi  uall: [x:A]. B[x] top: Top set: {x:A| B[x]}  cons: [car / cdr] nil: [] list: type List universe: Type equal: s = t
Definitions :  squash: T uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) implies: P  Q modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) so_lambda: x.t[x] fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) pair: <a, b> l_member: (x  l) tl: tl(l) hd: hd(l) decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) axiom: Ax nil: [] cons: [car / cdr] eclass-val: X(e) append: as @ bs es-prior-interface: prior(X) in-eclass: e  X es-interface-predecessors: (X)(e) es-loc: loc(e) Id: Id set: {x:A| B[x]}  list: type List union: left + right es-E-interface: E(X) subtype: S  T subtype_rel: A r B atom: Atom apply: f a token: "$token" ifthenelse: if b then t else f fi  record-select: r.x top: Top event_ordering: EO es-E: E lambda: x.A[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t tactic: Error :tactic,  exists: x:A. B[x] void: Void false: False bfalse: ff limited-type: LimitedType btrue: tt prop: iff: P  Q eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit bool: sqequal: s ~ t es-locl: (e <loc e') Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  guard: {T} es-causl: (e < e') sq_type: SQType(T) atom: Atom$n MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN
Lemmas :  eclass-val_wf eclass-val_wf2 atom2_subtype_base subtype_base_sq es-E-interface-subtype_rel es-prior-interface-locl es-prior-interface_wf1 es-prior-interface_wf es-prior-interface_wf0 in-eclass_wf bnot_wf assert_wf not_wf bool_wf assert_of_bnot eqff_to_assert uiff_transitivity iff_weakening_uiff eqtt_to_assert es-interface-predecessors-step-sq subtype_rel_wf append_wf es-interface-subtype_rel2 list-subtype l_member_wf btrue_neq_bfalse assert_elim not_assert_elim eclass_wf top_wf subtype_rel_self event-ordering+_wf es-interface-predecessors_wf ifthenelse_wf list-equal-set2 sq_stable_wf sq_stable__equal event-ordering+_inc es-loc_wf member_wf es-E_wf Id_wf es-E-interface_wf list-equal-set

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E(X)].
    (\mleq{}(X)(e)  =  if  e  \mmember{}\msubb{}  prior(X)  then  \mleq{}(X)(prior(X)(e))  @  [e]  else  [e]  fi  )


Date html generated: 2011_08_16-PM-05_16_50
Last ObjectModification: 2011_06_20-AM-01_18_43

Home Index