{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [e:E].
    ((X)(e) ~ if e  prior(X) then (X)(prior(X)(e)) else [] fi 
    @ if e  X then [e] else [] fi ) }

{ Proof }



Definitions occuring in Statement :  es-prior-interface: prior(X) es-interface-predecessors: (X)(e) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E append: as @ bs ifthenelse: if b then t else f fi  uall: [x:A]. B[x] top: Top cons: [car / cdr] nil: [] universe: Type sqequal: s ~ t
Definitions :  sqequal: s ~ t subtype: S  T top: Top event_ordering: EO es-E: E lambda: x.A[x] event-ordering+: EO+(Info) universe: Type eclass: EClass(A[eo; e]) all: x:A. B[x] function: x:A  B[x] member: t  T equal: s = t so_lambda: x y.t[x; y] uall: [x:A]. B[x] isect: x:A. B[x] Repeat: Error :Repeat,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  true: True squash: T es-causl: (e < e') apply: f a limited-type: LimitedType real: grp_car: |g| minus: -n add: n + m subtract: n - m void: Void false: False not: A natural_number: $n prop: le: A  B ge: i  j  int: set: {x:A| B[x]}  less_than: a < b nat: implies: P  Q product: x:A  B[x] exists: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) nil: [] cons: [car / cdr] append: as @ bs tl: tl(l) hd: hd(l) so_lambda: x.t[x] sq_type: SQType(T) Id: Id es-interface-predecessors: (X)(e) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) list: type List uimplies: b supposing a record-select: r.x dep-isect: Error :dep-isect,  record+: record+ subtype_rel: A r B es-E-interface: E(X) bfalse: ff decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  btrue: tt uiff: uiff(P;Q) and: P  Q iff: P  Q eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q band: p  q bor: p q assert: b bnot: b unit: Unit union: left + right bool: es-prior-interface: prior(X) in-eclass: e  X atom: Atom token: "$token" eclass-val: X(e) es-pred: pred(e) or: P  Q es-first: first(e) es-loc: loc(e) es-le: e loc e'  es-locl: (e <loc e') es-p-le: e p e' es-causle: e c e' es-p-locl: e pe' causal-predecessor: causal-predecessor(es;p) record: record(x.T[x])
Lemmas :  iff_transitivity es-interface-predecessors-nil eclass-val_wf2 eclass-val_wf es-E-interface-subtype_rel es-pred-causl append-nil es-loc_wf es-pred_wf es-prior-interface-cases-sq es-first_wf es-interface-subtype_rel2 subtype_rel_self ifthenelse_wf es-E-interface_wf Id_wf es-interface-predecessors_wf set_subtype_base assert_wf list_subtype_base subtype_base_sq bool_wf es-prior-interface_wf subtype_rel_wf es-prior-interface_wf1 es-prior-interface_wf0 in-eclass_wf bnot_wf not_wf assert_of_bnot eqff_to_assert uiff_transitivity iff_weakening_uiff eqtt_to_assert es-interface-predecessors-cases append_wf nat_wf ge_wf nat_properties es-causl-swellfnd le_wf member_wf es-causl_wf eclass_wf event-ordering+_wf top_wf es-E_wf event-ordering+_inc

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E].
    (\mleq{}(X)(e)  \msim{}  if  e  \mmember{}\msubb{}  prior(X)  then  \mleq{}(X)(prior(X)(e))  else  []  fi    @  if  e  \mmember{}\msubb{}  X  then  [e]  else  []  fi  )


Date html generated: 2011_08_16-PM-05_16_28
Last ObjectModification: 2011_06_20-AM-01_18_35

Home Index