{ [Info:Type]
    X:EClass(Top). es:EO+(Info). e:E.
      (first(e))
       (((pred(e)  X)  (prior(X)(e) ~ pred(e)))
         ((pred(e)  X)
           (pred(e)  prior(X))
           (prior(X)(e) ~ prior(X)(pred(e))))) 
      supposing e  prior(X) }

{ Proof }



Definitions occuring in Statement :  es-prior-interface: prior(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-pred: pred(e) es-first: first(e) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] not: A or: P  Q and: P  Q universe: Type sqequal: s ~ t
Definitions :  divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b l_member: (x  l) l_contains: A  B inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) squash: T l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') decidable: Dec(P) strong-subtype: strong-subtype(A;B) sqequal: s ~ t guard: {T} bfalse: ff sq_type: SQType(T) bool: infix_ap: x f y es-causl: (e < e') le: A  B ge: i  j  null: null(as) less_than: a < b uiff: uiff(P;Q) es-locl: (e <loc e') cand: A c B exists: x:A. B[x] iff: P  Q subtype: S  T atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" lambda: x.A[x] subtype_rel: A r B quotient: x,y:A//B[x; y] es-E-interface: E(X) bag: bag(T) dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ set: {x:A| B[x]}  record-select: r.x top: Top es-prior-interface: prior(X) universe: Type eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] all: x:A. B[x] es-E: E event-ordering+: EO+(Info) event_ordering: EO uimplies: b supposing a prop: product: x:A  B[x] or: P  Q union: left + right ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] true: True false: False void: Void uall: [x:A]. B[x] isect: x:A. B[x] implies: P  Q function: x:A  B[x] member: t  T equal: s = t and: P  Q MaAuto: Error :MaAuto,  es-pred: pred(e) in-eclass: e  X assert: b Decide: Error :Decide,  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  es-first: first(e) not: A AssertBY: Error :AssertBY,  tactic: Error :tactic,  Try: Error :Try,  bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) record: record(x.T[x]) so_lambda: x.t[x] single-bag: {x} bag-only: only(bs) limited-type: LimitedType btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b eclass-val: X(e) local-pred-class: local-pred-class(P) es-local-pred: last(P) unit: Unit int: RepeatFor: Error :RepeatFor,  bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) Id: Id inr: inr x  fpf: a:A fp-B[a] real: grp_car: |g| nat: inl: inl x  empty-bag: {} natural_number: $n bag-size: bag-size(bs) bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} Unfold: Error :Unfold,  intensional-universe: IType so_apply: x[s] eq_knd: a = b fpf-dom: x  dom(f)
Lemmas :  union_subtype_base intensional-universe_wf eq_int_eq_true eq_int_wf nat_wf bag-size_wf true_wf empty-bag_wf bag_wf es-causl_wf Id_wf assert_of_eq_int not_functionality_wrt_uiff es-local-pred_wf ifthenelse_wf single-bag_wf bag-only_wf es-locl_wf set_subtype_base eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf event-ordering+_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-E_wf es-E-interface_wf es-prior-interface_wf es-interface-subtype_rel2 member_wf eclass_wf es-prior-interface_wf1 top_wf es-prior-interface_wf0 in-eclass_wf assert_wf subtype_rel_wf assert_witness is-prior-interface not_wf false_wf bool_wf subtype_base_sq bool_subtype_base es-locl-first es-first_wf decidable__assert es-pred_wf

\mforall{}[Info:Type]
    \mforall{}X:EClass(Top).  \mforall{}es:EO+(Info).  \mforall{}e:E.
        (\mneg{}\muparrow{}first(e))
        \mwedge{}  (((\muparrow{}pred(e)  \mmember{}\msubb{}  X)  \mwedge{}  (prior(X)(e)  \msim{}  pred(e)))
            \mvee{}  ((\mneg{}\muparrow{}pred(e)  \mmember{}\msubb{}  X)  \mwedge{}  (\muparrow{}pred(e)  \mmember{}\msubb{}  prior(X))  \mwedge{}  (prior(X)(e)  \msim{}  prior(X)(pred(e))))) 
        supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X)


Date html generated: 2011_08_16-PM-04_45_49
Last ObjectModification: 2011_06_20-AM-01_03_54

Home Index