{ [A:Type]
    d:A List. x:A. eq:EqDecider(A).
      ((x  d)  (i:||d||. ((j:i. ((d[j] = x)))  (d[i] = x)))) }

{ Proof }



Definitions occuring in Statement :  select: l[i] length: ||as|| int_seg: {i..j} uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: A implies: P  Q and: P  Q list: type List natural_number: $n universe: Type equal: s = t l_member: (x  l) deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q length: ||as|| member: t  T prop: ycomb: Y exists: x:A. B[x] and: P  Q not: A select: l[i] top: Top subtype: S  T ifthenelse: if b then t else f fi  le_int: i z j bnot: b lt_int: i <z j bfalse: ff btrue: tt false: False int_seg: {i..j} cand: A c B lelt: i  j < k le: A  B rev_implies: P  Q iff: P  Q squash: T true: True bool: unit: Unit uimplies: b supposing a or: P  Q decidable: Dec(P) sq_type: SQType(T) guard: {T} it:
Lemmas :  nil_member l_member_wf deq_wf eqof_wf bool_wf iff_weakening_uiff assert_wf eqtt_to_assert not_wf uiff_transitivity bnot_wf eqff_to_assert assert_of_bnot uiff_inversion deq_property not_functionality_wrt_uiff non_neg_length length_wf_nat top_wf select_wf length_wf1 int_seg_wf length_cons cons_member int_seg_properties le_wf decidable__equal_int subtype_base_sq int_subtype_base squash_wf true_wf select_cons_tl select_cons_tl_sq

\mforall{}[A:Type]
    \mforall{}d:A  List.  \mforall{}x:A.  \mforall{}eq:EqDecider(A).
        ((x  \mmember{}  d)  {}\mRightarrow{}  (\mexists{}i:\mBbbN{}||d||.  ((\mforall{}j:\mBbbN{}i.  (\mneg{}(d[j]  =  x)))  \mwedge{}  (d[i]  =  x))))


Date html generated: 2011_08_10-AM-07_55_45
Last ObjectModification: 2011_06_18-AM-08_16_51

Home Index