{ es:EO. e:E.
    [P:{a:E| loc(a) = loc(e)}   ]
      ((a:{a:E| loc(a) = loc(e)} . Dec(P[a]))
       (e'e.P[e']  P[e]
          e'e.((P[e']  P[e]))  e''(e',e].P[e'']  P[e])) }

{ Proof }



Definitions occuring in Statement :  alle-between3: e(e1,e2].P[e] alle-le: ee'.P[e] existse-le: ee'.P[e] es-loc: loc(e) es-E: E event_ordering: EO Id: Id decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: P  Q not: A implies: P  Q or: P  Q and: P  Q set: {x:A| B[x]}  function: x:A  B[x] equal: s = t
Definitions :  all: x:A. B[x] uall: [x:A]. B[x] prop: implies: P  Q so_apply: x[s] member: t  T decidable: Dec(P) exists: x:A. B[x] or: P  Q iff: P  Q btrue: tt bfalse: ff and: P  Q rev_implies: P  Q false: False assert: b ifthenelse: if b then t else f fi  true: True alle-le: ee'.P[e] existse-le: ee'.P[e] alle-between3: e(e1,e2].P[e] cand: A c B guard: {T} not: A uimplies: b supposing a es-locl: (e <loc e')
Lemmas :  Id_wf es-loc_wf decidable_wf es-E_wf event_ordering_wf not_wf btrue_wf bfalse_wf iff_wf bool_wf btrue_neq_bfalse iff_imp_equal_bool false_wf true_wf last-transition es-le_wf es-locl_wf es-le-loc

\mforall{}es:EO.  \mforall{}e:E.
    \mforall{}[P:\{a:E|  loc(a)  =  loc(e)\}    {}\mrightarrow{}  \mBbbP{}]
        ((\mforall{}a:\{a:E|  loc(a)  =  loc(e)\}  .  Dec(P[a]))
        {}\mRightarrow{}  (\mforall{}e'\mleq{}e.P[e']  \mLeftarrow{}{}\mRightarrow{}  P[e]  \mvee{}  \mexists{}e'\mleq{}e.(\mneg{}(P[e']  \mLeftarrow{}{}\mRightarrow{}  P[e]))  \mwedge{}  \mforall{}e''\mmember{}(e',e].P[e'']  \mLeftarrow{}{}\mRightarrow{}  P[e]))


Date html generated: 2011_08_16-AM-10_53_24
Last ObjectModification: 2011_06_18-AM-09_26_45

Home Index