{ [l1,l2:IdLnk]. [dt:tg:Id fp-Type]. [tg:Id]. [T:Type].
    (lnk-decl(l1;dt)(rcv(l2,tg))?T ~ if l1 = l2 then dt(tg)?T else T fi ) }

{ Proof }



Definitions occuring in Statement :  lnk-decl: lnk-decl(l;dt) fpf-cap: f(x)?z fpf: a:A fp-B[a] Kind-deq: KindDeq eq_lnk: a = b id-deq: IdDeq rcv: rcv(l,tg) IdLnk: IdLnk Id: Id ifthenelse: if b then t else f fi  uall: [x:A]. B[x] universe: Type sqequal: s ~ t
Definitions :  member: t  T prop: IdLnk: IdLnk Id: Id all: x:A. B[x] so_lambda: x.t[x] fpf-cap: f(x)?z ifthenelse: if b then t else f fi  implies: P  Q btrue: tt bfalse: ff uall: [x:A]. B[x] sq_type: SQType(T) uimplies: b supposing a so_apply: x[s] guard: {T} bool: unit: Unit iff: P  Q and: P  Q not: A false: False it:
Lemmas :  eq_lnk_wf bool_wf assert_wf not_wf bnot_wf subtype_base_sq IdLnk_wf product_subtype_base Id_wf atom2_subtype_base lnk-decl-cap fpf-dom_wf Knd_wf Kind-deq_wf lnk-decl_wf fpf-trivial-subtype-top fpf_wf top_wf rcv_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot lnk-decl-dom2

\mforall{}[l1,l2:IdLnk].  \mforall{}[dt:tg:Id  fp->  Type].  \mforall{}[tg:Id].  \mforall{}[T:Type].
    (lnk-decl(l1;dt)(rcv(l2,tg))?T  \msim{}  if  l1  =  l2  then  dt(tg)?T  else  T  fi  )


Date html generated: 2011_08_10-AM-08_10_40
Last ObjectModification: 2011_06_18-AM-08_26_31

Home Index