{ [Info:Type]. [es:EO+(Info)]. [A,T:Type]. [X:EClass(A)]. [base:T].
  [f:T  A  T]. [e:E].
    (prior-state(f;base;X;e) = list_accum(x,a.f x a;base;X(<e))) }

{ Proof }



Definitions occuring in Statement :  es-local-prior-state: prior-state(f;base;X;e) es-prior-interface-vals: X(<e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uall: [x:A]. B[x] apply: f a function: x:A  B[x] universe: Type equal: s = t list_accum: list_accum(x,a.f[x; a];y;l)
Definitions :  uall: [x:A]. B[x] es-local-prior-state: prior-state(f;base;X;e) list_accum: list_accum(x,a.f[x; a];y;l) member: t  T all: x:A. B[x] nat: implies: P  Q ge: i  j  le: A  B not: A false: False prop: squash: T true: True so_lambda: x y.t[x; y] ycomb: Y top: Top rev_implies: P  Q iff: P  Q and: P  Q ifthenelse: if b then t else f fi  btrue: tt bfalse: ff es-E-interface: E(X) strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] so_apply: x[s1;s2] uimplies: b supposing a bool: unit: Unit subtype: S  T it: guard: {T}
Lemmas :  es-causl-swellfnd nat_properties ge_wf nat_wf le_wf es-causl_wf es-E_wf eclass_wf event-ordering+_wf event-ordering+_inc es-local-prior-state_wf in-eclass_wf es-prior-interface_wf es-interface-top es-E-interface_wf es-interface-subtype_rel2 top_wf bool_wf assert_wf not_wf bnot_wf list_accum_wf squash_wf true_wf es-prior-interface-vals-property iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot list_accum_append es-prior-interface-vals_wf eclass-val_wf2 subtype_rel_list es-interface-val_wf2 es-prior-interface-causl

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A,T:Type].  \mforall{}[X:EClass(A)].  \mforall{}[base:T].  \mforall{}[f:T  {}\mrightarrow{}  A  {}\mrightarrow{}  T].  \mforall{}[e:E].
    (prior-state(f;base;X;e)  =  list\_accum(x,a.f  x  a;base;X(<e)))


Date html generated: 2011_08_16-PM-05_34_36
Last ObjectModification: 2011_06_20-AM-01_27_29

Home Index