{ [s:SecurityTheory]. [bss:Basic1 List].
    [A:Id]
      ([es:EO+(Info)]. [thr:Thread].
         ([i:||thr||]. [j:i].
            ((New(thr[j]) released before thr[i])) supposing 
               ((k:{j + 1..i}. (thr[k]  Send)) and 
               (thr[j]  New))) supposing 
            (loc(thr)= A and 
            (thr is one of bss at A))) supposing 
         ((Protocol1(bss) A) and 
         Honest(A)) 
    supposing Legal(bss) }

{ Proof }



Definitions occuring in Statement :  ses-protocol1-legal: Legal(bss) ses-protocol1: Protocol1(bss) ses-protocol1-thread: (thr is one of bss at A) ses-basic-sequence1: Basic1 ses-thread-loc: loc(thr)= A ses-thread: Thread sth-es: sth-es(s) security-theory: SecurityTheory release-before: (a released before e) ses-honest: Honest(A) ses-send: Send ses-new: New ses-info: Info eclass-val: X(e) in-eclass: e  X event-ordering+: EO+(Info) Id: Id select: l[i] length: ||as|| assert: b int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] not: A apply: f a list: type List add: n + m natural_number: $n
Definitions :  rec: rec(x.A[x]) tree: Tree(E) sdata: SecurityData ses-action: Action(e) atom: Atom es-base-E: es-base-E(es) token: "$token" record-select: r.x es-E-interface: E(X) l_exists: (xL. P[x]) pair: <a, b> es-locl: (e <loc e') subtract: n - m ses-send: Send add: n + m eclass-val: X(e) lambda: x.A[x] release-before: (a released before e) void: Void false: False lelt: i  j < k event_ordering: EO es-E: E select: l[i] so_lambda: x y.t[x; y] ses-new: New in-eclass: e  X rationals: ses-act: Act eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) pi1: fst(t) l_member: (x  l) l_all: (xL.P[x]) l_contains: A  B ses-legal-thread: Legal(thr)@A exists: x:A. B[x] dep-isect: Error :dep-isect,  record+: record+ decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b atom: Atom$n implies: P  Q le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B top: Top set: {x:A| B[x]}  real: grp_car: |g| subtype: S  T int: nat: length: ||as|| natural_number: $n int_seg: {i..j} ses-thread-loc: loc(thr)= A ses-protocol1-thread: (thr is one of bss at A) ses-thread: Thread ses-info: Info event-ordering+: EO+(Info) ses-protocol1: Protocol1(bss) apply: f a ses-honest: Honest(A) Id: Id ses-protocol1-legal: Legal(bss) uimplies: b supposing a security-theory: SecurityTheory list: type List ses-basic-sequence1: Basic1 all: x:A. B[x] function: x:A  B[x] prop: universe: Type sth-es: sth-es(s) uall: [x:A]. B[x] isect: x:A. B[x] equal: s = t member: t  T MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  security-event-structure: SES ses-axioms: SecurityAxioms Auto: Error :Auto,  BHyp: Error :BHyp,  THENM: Error :THENM,  D: Error :D
Lemmas :  nonce-release-lemma in-eclass_wf ses-info_wf sth-es_wf ses-new_wf assert_wf int_seg_wf ses-act_wf length_wf1 subtype_rel_wf ses-thread_wf top_wf member_wf nat_wf length_wf_nat ses-thread-loc_wf ses-protocol1-thread_wf event-ordering+_wf ses-protocol1_wf ses-honest_wf Id_wf ses-protocol1-legal_wf ses-basic-sequence1_wf security-theory_wf eclass_wf es-E_wf select_wf event-ordering+_inc es-interface-top release-before_wf not_wf eclass-val_wf es-base-E_wf subtype_rel_self int_seg_properties ses-send_wf sdata_wf es-interface-subtype_rel2

\mforall{}[s:SecurityTheory].  \mforall{}[bss:Basic1  List].
    \mforall{}[A:Id]
        (\mforall{}[es:EO+(Info)].  \mforall{}[thr:Thread].
              (\mforall{}[i:\mBbbN{}||thr||].  \mforall{}[j:\mBbbN{}i].
                    (\mneg{}(New(thr[j])  released  before  thr[i]))  supposing 
                          ((\mforall{}k:\{j  +  1..i\msupminus{}\}.  (\mneg{}\muparrow{}thr[k]  \mmember{}\msubb{}  Send))  and 
                          (\muparrow{}thr[j]  \mmember{}\msubb{}  New)))  supposing 
                    (loc(thr)=  A  and 
                    (thr  is  one  of  bss  at  A)))  supposing 
              ((Protocol1(bss)  A)  and 
              Honest(A)) 
    supposing  Legal(bss)


Date html generated: 2011_08_17-PM-07_46_24
Last ObjectModification: 2011_06_18-PM-01_41_29

Home Index