{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [e:E].
    Prior(X) es e ~ if 0 <z bag-size(X es pred(e))
    then X es pred(e)
    else Prior(X) es pred(e)
    fi  
    supposing first(e) }

{ Proof }



Definitions occuring in Statement :  primed-class: Prior(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-pred: pred(e) es-first: first(e) es-E: E lt_int: i <z j assert: b ifthenelse: if b then t else f fi  uimplies: b supposing a uall: [x:A]. B[x] top: Top not: A apply: f a natural_number: $n universe: Type sqequal: s ~ t bag-size: bag-size(bs)
Definitions :  limited-type: LimitedType false: False bfalse: ff product: x:A  B[x] and: P  Q uiff: uiff(P;Q) eq_bool: p =b q le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b guard: {T} implies: P  Q btrue: tt subtype_rel: A r B sq_type: SQType(T) bool: union: left + right or: P  Q empty-bag: {} es-pred: pred(e) bag-size: bag-size(bs) natural_number: $n lt_int: i <z j ifthenelse: if b then t else f fi  primed-class: Prior(X) apply: f a top: Top lambda: x.A[x] subtype: S  T es-first: first(e) function: x:A  B[x] all: x:A. B[x] equal: s = t prop: member: t  T so_lambda: x.t[x] sqequal: s ~ t not: A assert: b es-E: E event_ordering: EO eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] event-ordering+: EO+(Info) universe: Type uall: [x:A]. B[x] uimplies: b supposing a isect: x:A. B[x] Auto: Error :Auto,  SplitOn: Error :SplitOn,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor,  tactic: Error :tactic
Lemmas :  assert_wf not_wf es-E_wf eclass_wf uall_wf event-ordering+_wf event-ordering+_inc top_wf es-first_wf primed-class-cases bool_cases bool_wf subtype_base_sq bool_subtype_base eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E].
    Prior(X)  es  e  \msim{}  if  0  <z  bag-size(X  es  pred(e))  then  X  es  pred(e)  else  Prior(X)  es  pred(e)  fi   
    supposing  \mneg{}\muparrow{}first(e)


Date html generated: 2011_08_16-PM-05_06_26
Last ObjectModification: 2011_06_20-AM-01_10_39

Home Index