{ [M:Type  Type]
    [m:]. (lvprocess(lp.M[lp];m) r lvprocess(lp.M[lp];m + 1)) 
    supposing A,B:Type.  ((A r B)  (M[A] r M[B])) }

{ Proof }



Definitions occuring in Statement :  lvprocess: lvprocess(lp.M[lp];n) subtype_rel: A r B nat: uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies: P  Q function: x:A  B[x] add: n + m natural_number: $n universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a all: x:A. B[x] implies: P  Q so_apply: x[s] lvprocess: lvprocess(lp.M[lp];n) member: t  T ycomb: Y process-input': process-input'(lp.M[lp];n) process-input: input(lp.M[lp];n) nat: dataflow: dataflow(A;B) type-monotone: Monotone(T.F[T]) so_lambda: x.t[x] le: A  B not: A false: False ifthenelse: if b then t else f fi  top: Top btrue: tt prop: and: P  Q bfalse: ff int_seg: {i..j} lelt: i  j < k ext-eq: A  B bool: unit: Unit iff: P  Q it:
Lemmas :  nat_wf subtype-corec process-input_wf le_wf Id_wf process-input'_wf subtype_rel_function subtype_rel_simple_product lvprocess_wf subtype_rel_transitivity process-ext-eq subtype_rel_product subtype_rel_self le_int_wf nat_properties bool_wf iff_weakening_uiff uiff_transitivity assert_wf eqtt_to_assert assert_of_le_int lt_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int top_wf subtype_rel_list int_seg_wf

\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[m:\mBbbN{}].  (lvprocess(lp.M[lp];m)  \msubseteq{}r  lvprocess(lp.M[lp];m  +  1)) 
    supposing  \mforall{}A,B:Type.    ((A  \msubseteq{}r  B)  {}\mRightarrow{}  (M[A]  \msubseteq{}r  M[B]))


Date html generated: 2011_08_17-PM-06_37_31
Last ObjectModification: 2011_06_18-PM-12_01_22

Home Index