Nuprl Lemma : rec-comb_wf2

[Info:Type]. [n,m:]. [A:{m..n}  Type]. [X:i:{m..n}  EClass(A i)]. [T:Type]. [f:Id
                                                                                             i:{m..n}  bag(A i)
                                                                                             bag(T)
                                                                                             bag(T)].
[init:Id  bag(T)].
  (rec-comb(X;f;init)  EClass(T))


Proof not projected




Definitions occuring in Statement :  rec-comb: rec-comb(X;f;init) eclass: EClass(A[eo; e]) Id: Id int_seg: {i..j} nat: uall: [x:A]. B[x] member: t  T apply: f a function: x:A  B[x] universe: Type bag: bag(T)
Definitions :  uall: [x:A]. B[x] nat: eclass: EClass(A[eo; e]) member: t  T rec-comb: rec-comb(X;f;init) top: Top ycomb: Y primed-class-opt: Prior(X)?b all: x:A. B[x] implies: P  Q ge: i  j  le: A  B not: A false: False squash: T true: True sq_exists: x:{A| B[x]} and: P  Q so_lambda: x y.t[x; y] strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] prop: or: P  Q so_apply: x[s1;s2] es-locl: (e <loc e') subtype: S  T guard: {T}
Lemmas :  top_wf es-causl-swellfnd event-ordering+_inc nat_properties ge_wf less_than_wf nat_wf le_wf es-causl_wf es-local-pred_wf2 lt_int_wf bag-size_wf es-locl_wf equal_wf es-E_wf event-ordering+_wf Id_wf bag_wf int_seg_wf eclass_wf

\mforall{}[Info:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[A:\{m..n\msupminus{}\}  {}\mrightarrow{}  Type].  \mforall{}[X:i:\{m..n\msupminus{}\}  {}\mrightarrow{}  EClass(A  i)].  \mforall{}[T:Type].
\mforall{}[f:Id  {}\mrightarrow{}  i:\{m..n\msupminus{}\}  {}\mrightarrow{}  bag(A  i)  {}\mrightarrow{}  bag(T)  {}\mrightarrow{}  bag(T)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(T)].
    (rec-comb(X;f;init)  \mmember{}  EClass(T))


Date html generated: 2012_01_23-PM-12_26_41
Last ObjectModification: 2011_12_19-PM-04_53_29

Home Index