{ [M:Type  Type]
    [S0:System(P.M[P])]. [n2m:  pMsg(P.M[P])]. [l2m:Id  pMsg(P.M[P])].
    [env:pEnvType(P.M[P])]. [e:runEvents(pRun(S0;env;n2m;l2m))].
      (0 < run-event-step(e)) 
    supposing Continuous+(P.M[P]) }

{ Proof }



Definitions occuring in Statement :  run-event-step: run-event-step(e) runEvents: runEvents(r) pRun: pRun(S0;env;nat2msg;loc2msg) pEnvType: pEnvType(T.M[T]) System: System(P.M[P]) pMsg: pMsg(P.M[P]) Id: Id strong-type-continuous: Continuous+(T.F[T]) nat: uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] less_than: a < b function: x:A  B[x] natural_number: $n universe: Type
Definitions :  decide_bfalse: decide_bfalse{decide_bfalse_compseq_tag_def:o}(v11.g[v11]; v21.f[v21]) atom: Atom$n limited-type: LimitedType real: grp_car: |g| lt_int: i <z j le_int: i z j bfalse: ff eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q band: p  q bor: p q bnot: b btrue: tt natural_number: $n eq_int: (i = j) sq_type: SQType(T) bool: is-run-event: is-run-event(r;t;x) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b length: ||as|| run-event-step: run-event-step(e) void: Void nat_plus: fpf-dom: x  dom(f) false: False guard: {T} pair: <a, b> pInTransit: pInTransit(P.M[P]) unit: Unit int: subtype: S  T tag-by: zT rev_implies: P  Q or: P  Q implies: P  Q iff: P  Q labeled-graph: LabeledGraph(T) record+: record+ record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 b-union: A  B union: left + right top: Top true: True fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) es-E-interface: E(X) fpf-cap: f(x)?z eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) ext-eq: A  B set: {x:A| B[x]}  ldag: LabeledDAG(T) list: type List le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B fulpRunType: fulpRunType(T.M[T]) runEvents: runEvents(r) pEnvType: pEnvType(T.M[T]) Id: Id nat: pMsg: pMsg(P.M[P]) uimplies: b supposing a prop: strong-type-continuous: Continuous+(T.F[T]) all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] equal: s = t lambda: x.A[x] apply: f a universe: Type uall: [x:A]. B[x] System: System(P.M[P]) so_lambda: x.t[x] SplitOn: Error :SplitOn,  CollapseTHEN: Error :CollapseTHEN,  RepUR: Error :RepUR,  D: Error :D,  MaAuto: Error :MaAuto,  pRun: pRun(S0;env;nat2msg;loc2msg) so_apply: x[s] pRunType: pRunType(T.M[T]) member: t  T AssertBY: Error :AssertBY,  tactic: Error :tactic,  Auto: Error :Auto
Lemmas :  pRunType_wf subtype_rel_wf fulpRunType_wf member_wf pRun_wf pEnvType_wf pMsg_wf Id_wf nat_wf System_wf strong-type-continuous_wf pInTransit_wf ldag_wf top_wf unit_wf subtype_rel_function subtype_rel_self subtype_rel_simple_product runEvents_wf bool_cases bool_wf subtype_base_sq bool_subtype_base iff_weakening_uiff uiff_transitivity eqtt_to_assert assert_of_eq_int not_wf eqff_to_assert assert_wf assert_of_bnot not_functionality_wrt_uiff eq_int_wf bnot_wf

\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[S0:System(P.M[P])].  \mforall{}[n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P])].  \mforall{}[l2m:Id  {}\mrightarrow{}  pMsg(P.M[P])].
    \mforall{}[env:pEnvType(P.M[P])].  \mforall{}[e:runEvents(pRun(S0;env;n2m;l2m))].
        (0  <  run-event-step(e)) 
    supposing  Continuous+(P.M[P])


Date html generated: 2011_08_16-PM-06_58_58
Last ObjectModification: 2011_06_18-AM-11_13_58

Home Index