{ [Info,A,B:Type]. [F:bag(A)  bag(B)]. [X:EClass(A)].
    (x.F[x]|X|  EClass(B)) }

{ Proof }



Definitions occuring in Statement :  simple-comb1: x.F[x]|X| eclass: EClass(A[eo; e]) uall: [x:A]. B[x] so_apply: x[s] member: t  T function: x:A  B[x] universe: Type bag: bag(T)
Definitions :  equal: s = t member: t  T isect: x:A. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] uall: [x:A]. B[x] function: x:A  B[x] bag: bag(T) universe: Type simple-comb1: x.F[x]|X| so_apply: x[s] apply: f a axiom: Ax all: x:A. B[x] lambda: x.A[x] event-ordering+: EO+(Info) es-E: E event_ordering: EO record+: record+ dep-isect: Error :dep-isect,  record-select: r.x ifthenelse: if b then t else f fi  eq_atom: x =a y token: "$token" es-base-E: es-base-E(es) top: Top atom: Atom eq_atom: eq_atom$n(x;y) subtype_rel: A r B subtype: S  T bool: simple-comb: simple-comb(F;Xs) uimplies: b supposing a fpf: a:A fp-B[a] uiff: uiff(P;Q) and: P  Q product: x:A  B[x] less_than: a < b not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) CollapseTHENA: Error :CollapseTHENA,  natural_number: $n so_lambda: x.t[x] Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  BHyp: Error :BHyp,  nat: int: rationals: real: set: {x:A| B[x]}  false: False implies: P  Q void: Void prop: p-outcome: Outcome int_seg: {i..j} select: l[i] cons: [car / cdr] nil: [] list: type List length: ||as|| label: ...$L... t lelt: i  j < k
Lemmas :  simple-comb_wf select_wf length_nil length_cons non_neg_length length_wf1 top_wf length_wf_nat int_seg_wf nat_wf le_wf not_wf false_wf es-base-E_wf subtype_rel_self event-ordering+_inc eclass_wf bag_wf es-E_wf event-ordering+_wf member_wf

\mforall{}[Info,A,B:Type].  \mforall{}[F:bag(A)  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].    (\mlambda{}x.F[x]|X|  \mmember{}  EClass(B))


Date html generated: 2011_08_16-PM-04_52_21
Last ObjectModification: 2011_05_11-AM-01_29_06

Home Index