{ [T:Id  Type]. [tab:secret-table(T)]. [keyv: + Atom1  data(T)].
  [n:||tab|| ].
    (st-atom(encrypt(tab;keyv);n) = st-atom(tab;n)) }

{ Proof }



Definitions occuring in Statement :  st-encrypt: encrypt(tab;keyv) st-atom: st-atom(tab;n) st-length: ||tab||  secret-table: secret-table(T) data: data(T) Id: Id int_seg: {i..j} nat: uall: [x:A]. B[x] function: x:A  B[x] product: x:A  B[x] union: left + right natural_number: $n universe: Type equal: s = t atom: Atom$n
Definitions :  uall: [x:A]. B[x] int_seg: {i..j} st-atom: st-atom(tab;n) st-encrypt: encrypt(tab;keyv) member: t  T pi2: snd(t) spreadn: spread3 update: f[x:=v] le: A  B prop: top: Top lelt: i  j < k and: P  Q not: A implies: P  Q false: False all: x:A. B[x] subtype: S  T ifthenelse: if b then t else f fi  btrue: tt bfalse: ff pi1: fst(t) squash: T true: True secret-table: secret-table(T) nat: st-length: ||tab||  bool: unit: Unit iff: P  Q uimplies: b supposing a it:
Lemmas :  int_seg_wf st-length_wf nat_wf data_wf secret-table_wf Id_wf lt_int_wf bool_wf assert_wf le_wf le_int_wf bnot_wf pi1_wf_top iff_weakening_uiff uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int eq_int_wf not_wf assert_of_eq_int assert_of_bnot not_functionality_wrt_uiff

\mforall{}[T:Id  {}\mrightarrow{}  Type].  \mforall{}[tab:secret-table(T)].  \mforall{}[keyv:\mBbbN{}  +  Atom1  \mtimes{}  data(T)].  \mforall{}[n:\mBbbN{}||tab||  ].
    (st-atom(encrypt(tab;keyv);n)  =  st-atom(tab;n))


Date html generated: 2011_08_16-AM-11_00_57
Last ObjectModification: 2011_06_18-AM-09_34_25

Home Index