{ [st:SimpleType]. (st-rank(st)  ) }

{ Proof }



Definitions occuring in Statement :  st-rank: st-rank(st) simple_type: SimpleType nat: uall: [x:A]. B[x] member: t  T
Definitions :  lt_int: i <z j bfalse: ff limited-type: LimitedType btrue: tt eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b apply: f a infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q le_int: i z j assert: b bnot: b unit: Unit union: left + right bool: grp_car: |g| imax: imax(a;b) add: n + m p-outcome: Outcome rec: rec(x.A[x]) strong-subtype: strong-subtype(A;B) ge: i  j  uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B prop: less_than: a < b void: Void implies: P  Q false: False not: A le: A  B set: {x:A| B[x]}  real: rationals: subtype: S  T int: natural_number: $n universe: Type atom: Atom lambda: x.A[x] so_lambda: x.t[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_lambda: x y.t[x; y] nat: axiom: Ax st-rank: st-rank(st) simple_type: SimpleType equal: s = t member: t  T simple_type_ind: simple_type_ind all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] CollapseTHEN: Error :CollapseTHEN
Lemmas :  le_wf member_wf nat_wf false_wf not_wf simple_type_wf simple_type_ind_wf imax_wf bool_wf uiff_transitivity eqtt_to_assert assert_of_le_int assert_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int lt_int_wf bnot_wf le_int_wf

\mforall{}[st:SimpleType].  (st-rank(st)  \mmember{}  \mBbbN{})


Date html generated: 2011_08_17-PM-04_51_01
Last ObjectModification: 2011_02_06-PM-08_54_31

Home Index