{ [st1,st2:SimpleType].
    st-kind(st1) ~ st-kind(st2) supposing st-similar(st1;st2) }

{ Proof }



Definitions occuring in Statement :  st-kind: st-kind(st) st-similar: st-similar(st1;st2) simple_type: SimpleType assert: b uimplies: b supposing a uall: [x:A]. B[x] sqequal: s ~ t
Definitions :  st_class-kind: st_class-kind(x) st_class?: st_class?(x) st_list-kind: st_list-kind(x) st_list?: st_list?(x) st_union-right: st_union-right(x) st_union-left: st_union-left(x) st_union?: st_union?(x) st_prod-snd: st_prod-snd(x) st_prod-fst: st_prod-fst(x) st_prod?: st_prod?(x) band: p  q st_arrow-range: st_arrow-range(x) st_arrow-domain: st_arrow-domain(x) st_arrow?: st_arrow?(x) true: True st_const?: st_const?(x) simple_type_ind_st_class: simple_type_ind_st_class_compseq_tag_def simple_type_ind_st_list: simple_type_ind_st_list_compseq_tag_def simple_type_ind_st_union: simple_type_ind_st_union_compseq_tag_def simple_type_ind_st_prod: simple_type_ind_st_prod_compseq_tag_def natural_number: $n simple_type_ind_st_arrow: simple_type_ind_st_arrow_compseq_tag_def false: False simple_type_ind_st_const: simple_type_ind_st_const_compseq_tag_def st_var-name: st_var-name(x) st_var?: st_var?(x) eq_atom: x =a y eq_atom: eq_atom$n(x;y) simple_type_ind_st_var: simple_type_ind_st_var_compseq_tag_def simple_type_ind: simple_type_ind st-kind: st-kind(st) st_class: st_class(kind) st_list: st_list(kind) st_union: st_union(left;right) st_prod: st_prod(fst;snd) st_arrow: st_arrow(domain;range) st_const: st_const(ty) st_var: st_var(name) set: {x:A| B[x]}  product: x:A  B[x] universe: Type atom: Atom union: left + right rec: rec(x.A[x]) function: x:A  B[x] all: x:A. B[x] st-similar: st-similar(st1;st2) so_lambda: x.t[x] sqequal: s ~ t uall: [x:A]. B[x] uimplies: b supposing a prop: assert: b isect: x:A. B[x] simple_type: SimpleType member: t  T equal: s = t Auto: Error :Auto,  Complete: Error :Complete,  Try: Error :Try,  CollapseTHEN: Error :CollapseTHEN,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor
Lemmas :  assert_wf simple_type_wf uall_wf st_union_wf st-similar_wf st_prod_wf st_arrow_wf st_const_wf st_var_wf st_list_wf st_class_wf eq_atom_wf false_wf true_wf band_wf

\mforall{}[st1,st2:SimpleType].    st-kind(st1)  \msim{}  st-kind(st2)  supposing  \muparrow{}st-similar(st1;st2)


Date html generated: 2011_08_17-PM-04_59_21
Last ObjectModification: 2011_02_07-PM-11_44_32

Home Index