{ [st1,st2:SimpleType].
    ((st-similar(st1;st2))  (st-rank(st1) = st-rank(st2))) }

{ Proof }



Definitions occuring in Statement :  st-similar: st-similar(st1;st2) st-rank: st-rank(st) simple_type: SimpleType assert: b uall: [x:A]. B[x] implies: P  Q int: equal: s = t
Definitions :  st_class-kind: st_class-kind(x) st_class: st_class(kind) st_list-kind: st_list-kind(x) st_list: st_list(kind) st_union-right: st_union-right(x) st_union-left: st_union-left(x) st_union: st_union(left;right) st_prod-snd: st_prod-snd(x) st_prod-fst: st_prod-fst(x) st_prod: st_prod(fst;snd) guard: {T} squash: T eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b apply: f a infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q bor: p q eclass: EClass(A[eo; e]) pair: <a, b> fpf: a:A fp-B[a] decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  st_prod?: st_prod?(x) st_union?: st_union?(x) st_list?: st_list?(x) st_class?: st_class?(x) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B band: p  q st_arrow-range: st_arrow-range(x) st_arrow-domain: st_arrow-domain(x) st_arrow?: st_arrow?(x) st_arrow: st_arrow(domain;range) true: True st_const?: st_const?(x) st_const: st_const(ty) simple_type_ind_st_class: simple_type_ind_st_class_compseq_tag_def simple_type_ind_st_list: simple_type_ind_st_list_compseq_tag_def simple_type_ind_st_union: simple_type_ind_st_union_compseq_tag_def simple_type_ind_st_prod: simple_type_ind_st_prod_compseq_tag_def imax: imax(a;b) add: n + m simple_type_ind_st_arrow: simple_type_ind_st_arrow_compseq_tag_def false: False simple_type_ind_st_const: simple_type_ind_st_const_compseq_tag_def natural_number: $n st_var-name: st_var-name(x) st_var?: st_var?(x) eq_atom: x =a y eq_atom: eq_atom$n(x;y) simple_type_ind_st_var: simple_type_ind_st_var_compseq_tag_def simple_type_ind: simple_type_ind st_var: st_var(name) set: {x:A| B[x]}  product: x:A  B[x] atom: Atom union: left + right rec: rec(x.A[x]) universe: Type all: x:A. B[x] st-similar: st-similar(st1;st2) prop: int: st-rank: st-rank(st) axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] simple_type: SimpleType equal: s = t implies: P  Q lambda: x.A[x] assert: b member: t  T function: x:A  B[x] Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  RepeatFor: Error :RepeatFor,  Complete: Error :Complete,  Try: Error :Try,  RepUR: Error :RepUR,  CollapseTHENA: Error :CollapseTHENA
Lemmas :  false_wf true_wf squash_wf imax_wf assert_of_band assert_wf st-similar_wf band_wf simple_type_wf eq_atom_wf

\mforall{}[st1,st2:SimpleType].    ((\muparrow{}st-similar(st1;st2))  {}\mRightarrow{}  (st-rank(st1)  =  st-rank(st2)))


Date html generated: 2011_08_17-PM-04_56_08
Last ObjectModification: 2011_02_08-AM-11_48_15

Home Index