{ [X:Type]. [eq:EqDecider(X)]. [f,g:x:X fp-Type]. [x:X].
    (f(x)?Void List) r (g(x)?Void List) supposing f  g }

{ Proof }



Definitions occuring in Statement :  fpf-sub: f  g fpf-cap: f(x)?z fpf: a:A fp-B[a] subtype_rel: A r B uimplies: b supposing a uall: [x:A]. B[x] list: type List void: Void universe: Type deq: EqDecider(T)
Definitions :  member: t  T so_lambda: x.t[x] prop: uall: [x:A]. B[x] uimplies: b supposing a fpf-cap: f(x)?z all: x:A. B[x] subtype: S  T implies: P  Q ifthenelse: if b then t else f fi  btrue: tt bfalse: ff so_apply: x[s] fpf-sub: f  g or: P  Q sq_type: SQType(T) guard: {T} iff: P  Q and: P  Q cand: A c B not: A false: False bool: unit: Unit it:
Lemmas :  fpf-dom_wf fpf-trivial-subtype-top bool_wf assert_wf not_wf bnot_wf bool_cases subtype_base_sq bool_subtype_base iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot fpf-cap_wf fpf-sub_wf fpf_wf deq_wf fpf-ap_wf

\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[f,g:x:X  fp->  Type].  \mforall{}[x:X].
    (f(x)?Void  List)  \msubseteq{}r  (g(x)?Void  List)  supposing  f  \msubseteq{}  g


Date html generated: 2011_08_10-AM-07_58_42
Last ObjectModification: 2011_06_18-AM-08_18_33

Home Index