{ [Info:Type]. [A:es:EO+(Info)  E  Type]. [X:EClass(A[es;e])].
    (Singlevalued(X)
     es:EO+(Info). e:E.
          ((X es e) = if (bag-size(X es e) = 1) then X es e else {} fi )) }

{ Proof }



Definitions occuring in Statement :  sv-class: Singlevalued(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E eq_int: (i = j) ifthenelse: if b then t else f fi  uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] iff: P  Q apply: f a function: x:A  B[x] natural_number: $n universe: Type equal: s = t bag-size: bag-size(bs) empty-bag: {} bag: bag(T)
Definitions :  real: grp_car: |g| int: nat: limited-type: LimitedType subtype: S  T fpf: a:A fp-B[a] record-select: r.x assert: b eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  dep-isect: Error :dep-isect,  record+: record+ strong-subtype: strong-subtype(A;B) ge: i  j  uimplies: b supposing a uiff: uiff(P;Q) subtype_rel: A r B prop: less_than: a < b axiom: Ax empty-bag: {} natural_number: $n bag-size: bag-size(bs) eq_int: (i = j) ifthenelse: if b then t else f fi  apply: f a so_apply: x[s1;s2] bag: bag(T) lambda: x.A[x] pair: <a, b> equal: s = t rev_implies: P  Q sv-class: Singlevalued(X) all: x:A. B[x] le: A  B not: A false: False void: Void universe: Type es-E: E event_ordering: EO event-ordering+: EO+(Info) function: x:A  B[x] uall: [x:A]. B[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) isect: x:A. B[x] iff: P  Q and: P  Q implies: P  Q product: x:A  B[x] member: t  T Auto: Error :Auto,  tactic: Error :tactic,  lt_int: i <z j le_int: i z j bfalse: ff btrue: tt null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) name_eq: name_eq(x;y) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b unit: Unit union: left + right bool: AssertBY: Error :AssertBY,  CollapseTHEN: Error :CollapseTHEN,  sqequal: s ~ t squash: T true: True bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o}
Lemmas :  iff_wf rev_implies_wf squash_wf true_wf false_wf bag-size-zero assert_wf not_wf bnot_wf bool_wf assert_of_eq_int not_functionality_wrt_uiff assert_of_bnot uiff_transitivity eqff_to_assert eqtt_to_assert event-ordering+_wf es-E_wf bag_wf member_wf empty-bag_wf nat_wf bag-size_wf eq_int_wf ifthenelse_wf le_wf sv-class_wf event-ordering+_inc eclass_wf

\mforall{}[Info:Type].  \mforall{}[A:es:EO+(Info)  {}\mrightarrow{}  E  {}\mrightarrow{}  Type].  \mforall{}[X:EClass(A[es;e])].
    (Singlevalued(X)
    \mLeftarrow{}{}\mRightarrow{}  \mforall{}es:EO+(Info).  \mforall{}e:E.    ((X  es  e)  =  if  (bag-size(X  es  e)  =\msubz{}  1)  then  X  es  e  else  \{\}  fi  ))


Date html generated: 2011_08_16-AM-11_31_50
Last ObjectModification: 2011_06_20-AM-00_28_42

Home Index