{ t:. A:Id List.
    (W:{a:Id| (a  A)}  List List
      ((ws:{a:Id| (a  A)}  List
          ((ws  W)  (||ws|| = ((2 * t) + 1))  no_repeats({a:Id| (a  A)} ;w\000Cs)))
       three-intersection(A;W))) supposing 
       (no_repeats(Id;A) and 
       (||A|| = ((3 * t) + 1))) }

{ Proof }



Definitions occuring in Statement :  three-intersection: three-intersection(A;W) Id: Id length: ||as|| nat: uimplies: b supposing a all: x:A. B[x] exists: x:A. B[x] iff: P  Q and: P  Q set: {x:A| B[x]}  list: type List multiply: n * m add: n + m natural_number: $n int: equal: s = t no_repeats: no_repeats(T;l) l_member: (x  l)
Definitions :  all: x:A. B[x] uimplies: b supposing a exists: x:A. B[x] and: P  Q iff: P  Q member: t  T implies: P  Q prop: cand: A c B rev_implies: P  Q top: Top subtype: S  T nat: uall: [x:A]. B[x]
Lemmas :  no_repeats_witness Id_wf combinations-list iff_wf l_member_wf length_wf1 no_repeats_wf three-intersection_wf nat_wf int_seg_wf decidable__equal_Id length_wf_nat top_wf equipollent_functionality_wrt_equipollent equipollent-length equipollent_weakening_ext-eq ext-eq_weakening equipollent-nsub three-intersecting-wait-set

\mforall{}t:\mBbbN{}.  \mforall{}A:Id  List.
    (\mexists{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List
        ((\mforall{}ws:\{a:Id|  (a  \mmember{}  A)\}    List.  ((ws  \mmember{}  W)  \mLeftarrow{}{}\mRightarrow{}  (||ws||  =  ((2  *  t)  +  1))  \mwedge{}  no\_repeats(\{a:Id|  (a  \mmember{}  A)\}\000C  ;ws)))
        \mwedge{}  three-intersection(A;W)))  supposing 
          (no\_repeats(Id;A)  and 
          (||A||  =  ((3  *  t)  +  1)))


Date html generated: 2011_08_16-AM-10_00_31
Last ObjectModification: 2011_06_18-AM-08_58_28

Home Index