{ [B:Type]. [n:]. [A:n  Type]. [f:funtype(n;A;B)].
    (uncurry-rev(n;f)  k:n  (A k)  B) }

{ Proof }



Definitions occuring in Statement :  uncurry-rev: uncurry-rev(n;f) int_seg: {i..j} nat: uall: [x:A]. B[x] member: t  T apply: f a function: x:A  B[x] natural_number: $n universe: Type funtype: funtype(n;A;T)
Definitions :  Unfold: Error :Unfold,  CollapseTHENA: Error :CollapseTHENA,  sqequal: s ~ t subtract: n - m equal: s = t function: x:A  B[x] int_seg: {i..j} universe: Type lambda: x.A[x] apply: f a add: n + m natural_number: $n Try: Error :Try,  Complete: Error :Complete,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  member: t  T uncurry-rev: uncurry-rev(n;f) axiom: Ax isect: x:A. B[x] funtype: funtype(n;A;T) uall: [x:A]. B[x] nat: all: x:A. B[x] int: subtype: S  T grp_car: |g| real: set: {x:A| B[x]}  rationals: lelt: i  j < k and: P  Q product: x:A  B[x] less_than: a < b le: A  B not: A implies: P  Q false: False prop: void: Void subtype_rel: A r B uiff: uiff(P;Q) uimplies: b supposing a ge: i  j  strong-subtype: strong-subtype(A;B) primrec: primrec(n;b;c) ycomb: Y p-outcome: Outcome fpf: a:A fp-B[a] eclass: EClass(A[eo; e]) sq_type: SQType(T) guard: {T} iff: P  Q rev_implies: P  Q squash: T true: True
Lemmas :  squash_wf true_wf rev_implies_wf iff_wf uncurry-gen_wf nat_wf member_wf funtype_wf subtype_rel_wf subtype_base_sq int_subtype_base int_seg_wf not_wf false_wf le_wf

\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[f:funtype(n;A;B)].    (uncurry-rev(n;f)  \mmember{}  k:\mBbbN{}n  {}\mrightarrow{}  (A  k)  {}\mrightarrow{}  B)


Date html generated: 2011_08_17-PM-06_02_37
Last ObjectModification: 2011_05_31-PM-11_59_19

Home Index