Nuprl Lemma : bm_T-wf2

[T,Key:Type]. ∀[key:Key]. ∀[value:T]. ∀[cnt:ℤ]. ∀[left,right:binary-map(T;Key)].
  bm_T(key;value;cnt;left;right) ∈ binary-map(T;Key) supposing cnt (1 bm_numItems(left) bm_numItems(right)) ∈ ℤ


Proof




Definitions occuring in Statement :  bm_numItems: bm_numItems(m) binary-map: binary-map(T;Key) bm_T: bm_T(key;value;cnt;left;right) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T add: m natural_number: $n int: universe: Type equal: t ∈ T
Lemmas :  bm_cnt_prop_T assert_elim bm_cnt_prop_wf subtype_base_sq bool_wf bool_subtype_base assert_wf equal-wf-base-T int_subtype_base bm_numItems_wf binary-map_wf
\mforall{}[T,Key:Type].  \mforall{}[key:Key].  \mforall{}[value:T].  \mforall{}[cnt:\mBbbZ{}].  \mforall{}[left,right:binary-map(T;Key)].
    bm\_T(key;value;cnt;left;right)  \mmember{}  binary-map(T;Key) 
    supposing  cnt  =  (1  +  bm\_numItems(left)  +  bm\_numItems(right))



Date html generated: 2015_07_17-AM-08_18_38
Last ObjectModification: 2015_01_27-PM-00_40_09

Home Index