Nuprl Lemma : bm_cnt_prop_T
∀[T,Key:Type]. ∀[key:Key]. ∀[value:T]. ∀[cnt:ℤ]. ∀[left,right:binary_map(T;Key)].
  uiff(↑bm_cnt_prop(bm_T(key;value;cnt;left;right));(cnt = (1 + bm_numItems(left) + bm_numItems(right)) ∈ ℤ)
  ∧ (↑bm_cnt_prop(left))
  ∧ (↑bm_cnt_prop(right)))
Proof
Definitions occuring in Statement : 
bm_numItems: bm_numItems(m)
, 
bm_cnt_prop: bm_cnt_prop(m)
, 
bm_T: bm_T(key;value;cnt;left;right)
, 
binary_map: binary_map(T;Key)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
bm_cnt_prop0_T, 
assert_witness, 
bm_cnt_prop_wf, 
assert_wf, 
bm_T_wf, 
equal-wf-base-T, 
int_subtype_base, 
bm_numItems_wf, 
binary_map_wf, 
iff_transitivity, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
bm_cnt_prop0_wf, 
iff_weakening_uiff, 
assert_of_band, 
bm_numItems_is_cnt_prop0
\mforall{}[T,Key:Type].  \mforall{}[key:Key].  \mforall{}[value:T].  \mforall{}[cnt:\mBbbZ{}].  \mforall{}[left,right:binary\_map(T;Key)].
    uiff(\muparrow{}bm\_cnt\_prop(bm\_T(key;value;cnt;left;right));(cnt
                                                                                                        =  (1  +  bm\_numItems(left)  +  bm\_numItems(right)))
    \mwedge{}  (\muparrow{}bm\_cnt\_prop(left))
    \mwedge{}  (\muparrow{}bm\_cnt\_prop(right)))
Date html generated:
2015_07_17-AM-08_18_36
Last ObjectModification:
2015_01_27-PM-00_40_23
Home
Index