Nuprl Lemma : bm_cnt_prop_T

[T,Key:Type]. ∀[key:Key]. ∀[value:T]. ∀[cnt:ℤ]. ∀[left,right:binary_map(T;Key)].
  uiff(↑bm_cnt_prop(bm_T(key;value;cnt;left;right));(cnt (1 bm_numItems(left) bm_numItems(right)) ∈ ℤ)
  ∧ (↑bm_cnt_prop(left))
  ∧ (↑bm_cnt_prop(right)))


Proof




Definitions occuring in Statement :  bm_numItems: bm_numItems(m) bm_cnt_prop: bm_cnt_prop(m) bm_T: bm_T(key;value;cnt;left;right) binary_map: binary_map(T;Key) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q add: m natural_number: $n int: universe: Type equal: t ∈ T
Lemmas :  bm_cnt_prop0_T assert_witness bm_cnt_prop_wf assert_wf bm_T_wf equal-wf-base-T int_subtype_base bm_numItems_wf binary_map_wf iff_transitivity eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int bm_cnt_prop0_wf iff_weakening_uiff assert_of_band bm_numItems_is_cnt_prop0
\mforall{}[T,Key:Type].  \mforall{}[key:Key].  \mforall{}[value:T].  \mforall{}[cnt:\mBbbZ{}].  \mforall{}[left,right:binary\_map(T;Key)].
    uiff(\muparrow{}bm\_cnt\_prop(bm\_T(key;value;cnt;left;right));(cnt
                                                                                                        =  (1  +  bm\_numItems(left)  +  bm\_numItems(right)))
    \mwedge{}  (\muparrow{}bm\_cnt\_prop(left))
    \mwedge{}  (\muparrow{}bm\_cnt\_prop(right)))



Date html generated: 2015_07_17-AM-08_18_36
Last ObjectModification: 2015_01_27-PM-00_40_23

Home Index