Nuprl Lemma : bm_numItems_is_cnt_prop0

[T,Key:Type]. ∀[m:binary_map(T;Key)].  (bm_numItems(m) fst(bm_cnt_prop0(m)))


Proof




Definitions occuring in Statement :  bm_numItems: bm_numItems(m) bm_cnt_prop0: bm_cnt_prop0(m) binary_map: binary_map(T;Key) uall: [x:A]. B[x] pi1: fst(t) universe: Type sqequal: t
Lemmas :  subtype_base_sq int_subtype_base binary_map-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom atom_subtype_base unit_wf2 unit_subtype_base it_wf bm_numItems_E bm_cnt_prop0_E_reduce_lemma eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom bm_numItems_T_reduce_lemma bm_cnt_prop0_T binary_map_wf
\mforall{}[T,Key:Type].  \mforall{}[m:binary\_map(T;Key)].    (bm\_numItems(m)  \msim{}  fst(bm\_cnt\_prop0(m)))



Date html generated: 2015_07_17-AM-08_18_34
Last ObjectModification: 2015_01_27-PM-00_40_02

Home Index