Nuprl Lemma : bm_numItems_is_cnt_prop0
∀[T,Key:Type]. ∀[m:binary_map(T;Key)].  (bm_numItems(m) ~ fst(bm_cnt_prop0(m)))
Proof
Definitions occuring in Statement : 
bm_numItems: bm_numItems(m)
, 
bm_cnt_prop0: bm_cnt_prop0(m)
, 
binary_map: binary_map(T;Key)
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
universe: Type
, 
sqequal: s ~ t
Lemmas : 
subtype_base_sq, 
int_subtype_base, 
binary_map-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
atom_subtype_base, 
unit_wf2, 
unit_subtype_base, 
it_wf, 
bm_numItems_E, 
bm_cnt_prop0_E_reduce_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
bm_numItems_T_reduce_lemma, 
bm_cnt_prop0_T, 
binary_map_wf
\mforall{}[T,Key:Type].  \mforall{}[m:binary\_map(T;Key)].    (bm\_numItems(m)  \msim{}  fst(bm\_cnt\_prop0(m)))
Date html generated:
2015_07_17-AM-08_18_34
Last ObjectModification:
2015_01_27-PM-00_40_02
Home
Index