Nuprl Lemma : hdf-ap-invariant

[A,B:Type]. ∀[Q:bag(B) ─→ ℙ]. ∀[X:{X:hdataflow(A;B)| hdf-invariant(A;b.Q[b];X)} ]. ∀[a:A].
  (fst(X(a)) ∈ {X:hdataflow(A;B)| hdf-invariant(A;b.Q[b];X)} )


Proof




Definitions occuring in Statement :  hdf-invariant: hdf-invariant(A;b.Q[b];X) hdf-ap: X(a) hdataflow: hdataflow(A;B) uall: [x:A]. B[x] prop: so_apply: x[s] pi1: fst(t) member: t ∈ T set: {x:A| B[x]}  function: x:A ─→ B[x] universe: Type bag: bag(T)
Lemmas :  hdf-ap_wf cons_wf iter_hdf_cons_lemma list_wf hdf-invariant_wf set_wf hdataflow_wf bag_wf
\mforall{}[A,B:Type].  \mforall{}[Q:bag(B)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[X:\{X:hdataflow(A;B)|  hdf-invariant(A;b.Q[b];X)\}  ].  \mforall{}[a:A].
    (fst(X(a))  \mmember{}  \{X:hdataflow(A;B)|  hdf-invariant(A;b.Q[b];X)\}  )



Date html generated: 2015_07_17-AM-08_05_11
Last ObjectModification: 2015_01_27-PM-00_16_01

Home Index