Nuprl Lemma : hdf-prior_wf
∀[A,B:Type]. ∀[X:hdataflow(A;B)]. ∀[b:bag(B)].  hdf-prior(X;b) ∈ hdataflow(A;B) supposing (↓B) ∧ valueall-type(B)
Proof
Definitions occuring in Statement : 
hdf-prior: hdf-prior(X;b)
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
member: t ∈ T
, 
universe: Type
, 
bag: bag(T)
Lemmas : 
hdf-buffer_wf, 
hdf-compose1_wf, 
single-bag_wf, 
function-valueall-type, 
bag-value-type, 
squash_wf, 
valueall-type_wf, 
bag_wf, 
hdataflow_wf
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[b:bag(B)].
    hdf-prior(X;b)  \mmember{}  hdataflow(A;B)  supposing  (\mdownarrow{}B)  \mwedge{}  valueall-type(B)
Date html generated:
2015_07_17-AM-08_06_15
Last ObjectModification:
2015_01_27-PM-00_15_29
Home
Index