Step
*
of Lemma
hdf-until-halt-right
∀[A,B:Type]. ∀[X:hdataflow(A;B)]. (hdf-until(X;hdf-halt()) = X ∈ hdataflow(A;B))
BY
{ (Auto THEN RWO "hdataflow-equal" 0 THEN Auto THEN Try ((Using [`C',⌈Top⌉] (BLemma `hdf-until_wf`)⋅ THEN Auto))) }
1
1. A : Type
2. B : Type
3. X : hdataflow(A;B)
4. inputs : A List
⊢ hdf-halted(hdf-until(X;hdf-halt())*(inputs)) = hdf-halted(X*(inputs))
2
1. A : Type
2. B : Type
3. X : hdataflow(A;B)
4. inputs : A List
5. hdf-halted(hdf-until(X;hdf-halt())*(inputs)) = hdf-halted(X*(inputs))
6. a : A
⊢ hdf-out(hdf-until(X;hdf-halt())*(inputs);a) = hdf-out(X*(inputs);a) ∈ bag(B)
Latex:
\mforall{}[A,B:Type]. \mforall{}[X:hdataflow(A;B)]. (hdf-until(X;hdf-halt()) = X)
By
(Auto
THEN RWO "hdataflow-equal" 0
THEN Auto
THEN Try ((Using [`C',\mkleeneopen{}Top\mkleeneclose{}] (BLemma `hdf-until\_wf`)\mcdot{} THEN Auto)))
Home
Index