Nuprl Lemma : hdf-until-halt-right

[A,B:Type]. ∀[X:hdataflow(A;B)].  (hdf-until(X;hdf-halt()) X ∈ hdataflow(A;B))


Proof




Definitions occuring in Statement :  hdf-until: hdf-until(X;Y) hdf-halt: hdf-halt() hdataflow: hdataflow(A;B) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Lemmas :  hdataflow-equal hdf-until_wf top_wf hdf-halt_wf list_wf hdataflow_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base colength_wf_list list-cases iter_hdf_nil_lemma product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel nat_wf decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-commutes le_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base iter_hdf_cons_lemma bag_null_empty_lemma hdf-halted_wf bool_wf eqtt_to_assert hdf_halted_halt_red_lemma btrue_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot hdf_halted_run_red_lemma bfalse_wf hdf-until-ap hdf_ap_halt_lemma hdf-ap_wf bag_wf iterate-hdataflow_wf iff_weakening_equal hdf_out_halt_red_lemma hdf-halted-is-inr empty-bag_wf hdf-out-run hdataflow-ext unit_wf2 hdf_halted_inl_red_lemma hdf-ap-inl and_wf pi2_wf not_wf true_wf hdf-out_wf
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B)].    (hdf-until(X;hdf-halt())  =  X)



Date html generated: 2015_07_17-AM-08_06_13
Last ObjectModification: 2015_02_03-PM-09_47_17

Home Index