Nuprl Lemma : hdf-until_wf

[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)].  (hdf-until(X;Y) ∈ hdataflow(A;B))


Proof




Definitions occuring in Statement :  hdf-until: hdf-until(X;Y) hdataflow: hdataflow(A;B) uall: [x:A]. B[x] member: t ∈ T universe: Type
Lemmas :  mk-hdf_wf hdf-halted_wf hdf-ap_wf bag_wf bag-null_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot assert-bag-null equal-wf-T-base hdf-halt_wf hdataflow_wf
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:hdataflow(A;C)].    (hdf-until(X;Y)  \mmember{}  hdataflow(A;B))



Date html generated: 2015_07_17-AM-08_06_07
Last ObjectModification: 2015_01_27-PM-00_15_55

Home Index