Nuprl Lemma : hdf-until_wf
∀[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)].  (hdf-until(X;Y) ∈ hdataflow(A;B))
Proof
Definitions occuring in Statement : 
hdf-until: hdf-until(X;Y)
, 
hdataflow: hdataflow(A;B)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Lemmas : 
mk-hdf_wf, 
hdf-halted_wf, 
hdf-ap_wf, 
bag_wf, 
bag-null_wf, 
bool_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
assert-bag-null, 
equal-wf-T-base, 
hdf-halt_wf, 
hdataflow_wf
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:hdataflow(A;C)].    (hdf-until(X;Y)  \mmember{}  hdataflow(A;B))
Date html generated:
2015_07_17-AM-08_06_07
Last ObjectModification:
2015_01_27-PM-00_15_55
Home
Index