Nuprl Lemma : hdf-until-ap
∀[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)]. ∀[a:A].
  (hdf-until(X;Y)(a)
  = <if bag-null(snd(Y(a))) then hdf-until(fst(X(a));fst(Y(a))) else hdf-halt() fi , snd(X(a))>
  ∈ (hdataflow(A;B) × bag(B)))
Proof
Definitions occuring in Statement : 
hdf-until: hdf-until(X;Y)
, 
hdf-halt: hdf-halt()
, 
hdf-ap: X(a)
, 
hdataflow: hdataflow(A;B)
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
bag-null: bag-null(bs)
, 
bag: bag(T)
Lemmas : 
hdf-halted_wf, 
eqtt_to_assert, 
hdf_ap_halt_lemma, 
assert-bag-null, 
hdataflow-ext, 
bag_wf, 
unit_wf2, 
hdf_halted_inl_red_lemma, 
false_wf, 
hdf_halted_halt_red_lemma, 
hdataflow_wf, 
hdf-ap-inl, 
hdf-halt_wf, 
empty-bag_wf, 
equal-wf-T-base, 
hdf-ap_wf, 
hdf-run_wf, 
equal-wf-base, 
true_wf, 
eqff_to_assert, 
equal_wf, 
bool_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
hdf-ap-run, 
pi2_wf, 
squash_wf, 
iff_weakening_equal, 
bag_null_empty_lemma, 
hdf-until_wf, 
bag-null_wf, 
not_wf
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:hdataflow(A;C)].  \mforall{}[a:A].
    (hdf-until(X;Y)(a)
    =  <if  bag-null(snd(Y(a)))  then  hdf-until(fst(X(a));fst(Y(a)))  else  hdf-halt()  fi  ,  snd(X(a))>)
Date html generated:
2015_07_17-AM-08_06_08
Last ObjectModification:
2015_02_03-PM-09_47_22
Home
Index