Nuprl Lemma : equalf_from_lef_wf

[y:Type]. ∀[lef:y ─→ y ─→ 𝔹]. ∀[x,y:y].  (equalf_from_lef(lef;x;y) ∈ 𝔹)


Proof




Definitions occuring in Statement :  equalf_from_lef: equalf_from_lef(lef;x;y) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  bool_wf eqtt_to_assert uiff_transitivity equal-wf-T-base assert_wf bnot_wf not_wf eqff_to_assert assert_of_bnot bfalse_wf
\mforall{}[y:Type].  \mforall{}[lef:y  {}\mrightarrow{}  y  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x,y:y].    (equalf\_from\_lef(lef;x;y)  \mmember{}  \mBbbB{})



Date html generated: 2015_07_17-AM-07_41_16
Last ObjectModification: 2015_01_27-AM-09_31_09

Home Index