Step
*
1
8
of Lemma
mFOL-proveable-evidence
1. hyps : mFOL() List@i
2. concl : mFOL()@i
3. subgoals : mFOL-sequent() List@i
4. subproofs : ℕ||subgoals|| ─→ proof-tree(mFOL-sequent();mFOLRule();λsr.mFOLeffect(sr))@i'
5. ∀b:ℕ||subgoals||. ∀s:mFOL-sequent().
(correct_proof(mFOL-sequent();λsr.mFOLeffect(sr);s;subproofs b)
⇒ mFOL-sequent-evidence(s))@i'
6. ∀i:ℕ||subgoals||. correct_proof(mFOL-sequent();λsr.mFOLeffect(sr);subgoals[i];subproofs i)@i'
7. hypnum : ℕ@i
8. hypnum < ||hyps||
9. ↑mFOconnect?(hyps[hypnum])
10. mFOconnect-knd(hyps[hypnum]) = "and" ∈ Atom
11. [<[mFOconnect-left(hyps[hypnum]); [mFOconnect-right(hyps[hypnum]) / hyps]], concl>] = subgoals ∈ (mFOL-sequent() Lis\000Ct)
12. mFOL-sequent-evidence(<[mFOconnect-left(hyps[hypnum]); [mFOconnect-right(hyps[hypnum]) / hyps]], concl>)
⊢ mFOL-sequent-evidence(<hyps, concl>)
BY
{ (ThinVar `subgoals' THEN (FLemma `mFOL-sequent-evidence_transitivity2` [-1] THEN Auto)⋅) }
1
.....antecedent.....
1. hyps : mFOL() List@i
2. concl : mFOL()@i
3. hypnum : ℕ@i
4. hypnum < ||hyps||
5. ↑mFOconnect?(hyps[hypnum])
6. mFOconnect-knd(hyps[hypnum]) = "and" ∈ Atom
7. mFOL-sequent-evidence(<[mFOconnect-left(hyps[hypnum]); [mFOconnect-right(hyps[hypnum]) / hyps]], concl>)
⊢ mFOL-sequent-evidence(<[mFOconnect-right(hyps[hypnum]) / hyps], mFOconnect-left(hyps[hypnum])>)
2
1. hyps : mFOL() List@i
2. concl : mFOL()@i
3. hypnum : ℕ@i
4. hypnum < ||hyps||
5. ↑mFOconnect?(hyps[hypnum])
6. mFOconnect-knd(hyps[hypnum]) = "and" ∈ Atom
7. mFOL-sequent-evidence(<[mFOconnect-left(hyps[hypnum]); [mFOconnect-right(hyps[hypnum]) / hyps]], concl>)
8. mFOL-sequent-evidence(<[mFOconnect-right(hyps[hypnum]) / hyps], concl>)
⊢ mFOL-sequent-evidence(<hyps, concl>)
Latex:
1. hyps : mFOL() List@i
2. concl : mFOL()@i
3. subgoals : mFOL-sequent() List@i
4. subproofs : \mBbbN{}||subgoals|| {}\mrightarrow{} proof-tree(mFOL-sequent();mFOLRule();\mlambda{}sr.mFOLeffect(sr))@i'
5. \mforall{}b:\mBbbN{}||subgoals||. \mforall{}s:mFOL-sequent().
(correct\_proof(mFOL-sequent();\mlambda{}sr.mFOLeffect(sr);s;subproofs b) {}\mRightarrow{} mFOL-sequent-evidence(s))@i'
6. \mforall{}i:\mBbbN{}||subgoals||. correct\_proof(mFOL-sequent();\mlambda{}sr.mFOLeffect(sr);subgoals[i];subproofs i)@i'
7. hypnum : \mBbbN{}@i
8. hypnum < ||hyps||
9. \muparrow{}mFOconnect?(hyps[hypnum])
10. mFOconnect-knd(hyps[hypnum]) = "and"
11. [<[mFOconnect-left(hyps[hypnum]); [mFOconnect-right(hyps[hypnum]) / hyps]], concl>] = subgoals
12. mFOL-sequent-evidence(<[mFOconnect-left(hyps[hypnum]); [mFOconnect-right(hyps[hypnum]) / hyps]]
, concl
>)
\mvdash{} mFOL-sequent-evidence(<hyps, concl>)
By
(ThinVar `subgoals' THEN (FLemma `mFOL-sequent-evidence\_transitivity2` [-1] THEN Auto)\mcdot{})
Home
Index