Nuprl Lemma : cosetTC-contained
∀s:coSet{i:l}. (transitive-set(s) ⇒ (cosetTC(s) ⊆ s))
Proof
Definitions occuring in Statement : 
transitive-set: transitive-set(s), 
setsubset: (a ⊆ b), 
cosetTC: cosetTC(a), 
coSet: coSet{i:l}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
cosetTC-least, 
setsubset-iff, 
setmem_wf, 
coSet_wf, 
transitive-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
independent_functionElimination, 
productElimination, 
hypothesis, 
isectElimination, 
hypothesisEquality
Latex:
\mforall{}s:coSet\{i:l\}.  (transitive-set(s)  {}\mRightarrow{}  (cosetTC(s)  \msubseteq{}  s))
 Date html generated: 
2019_10_31-AM-06_33_54
 Last ObjectModification: 
2018_08_04-AM-10_25_56
Theory : constructive!set!theory
Home
Index