Nuprl Lemma : cosetTC-least

a,s:coSet{i:l}.  ((a ⊆ s)  transitive-set(s)  (cosetTC(a) ⊆ s))


Proof




Definitions occuring in Statement :  transitive-set: transitive-set(s) setsubset: (a ⊆ b) cosetTC: cosetTC(a) coSet: coSet{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  nequal: a ≠ b ∈  allsetmem: a∈A.P[a] setsubset: (a ⊆ b) set-dom: set-dom(s) coW-dom: coW-dom(a.B[a];w) eq_int: (i =z j) subtract: m set-item: set-item(s;x) pi2: snd(t) coW-item: coW-item(w;b) assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 coPath-at: coPath-at(n;w;p) coPath: coPath(a.B[a];w;n) satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) nat: false: False less_than': less_than'(a;b) squash: T less_than: a < b copath-at: copath-at(w;p) pi1: fst(t) copath-length: copath-length(p) copath: copath(a.B[a];w) prop: subtype_rel: A ⊆B coSet: coSet{i:l} so_apply: x[s] so_lambda: λ2x.t[x] exists: x:A. B[x] top: Top cosetTC: cosetTC(a) rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  transitive-set-iff set-item_wf decidable__lt set-dom_wf int_subtype_base decidable__equal_int neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert top_wf int_formula_prop_eq_lemma intformeq_wf assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf nat_wf primrec-wf2 set_wf coPath-at_wf int_term_value_subtract_lemma itermSubtract_wf all_wf subtract_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le coPath_wf less_than_wf coSet_wf setsubset_wf transitive-set_wf setmem_wf subtype_rel_self copath-at_wf setmem_functionality_1 setmem-mk-coset setsubset-iff cosetTC_functionality_subset cosetTC_wf setsubset_transitivity
Rules used in proof :  promote_hyp equalitySymmetry equalityTransitivity equalityElimination functionEquality independent_pairFormation intEquality int_eqEquality dependent_pairFormation approximateComputation independent_isectElimination unionElimination dependent_set_memberEquality cumulativity natural_numberEquality imageElimination instantiate applyEquality rename setElimination lambdaEquality universeEquality because_Cache sqequalRule voidEquality voidElimination isect_memberEquality productElimination independent_functionElimination hypothesis hypothesisEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a,s:coSet\{i:l\}.    ((a  \msubseteq{}  s)  {}\mRightarrow{}  transitive-set(s)  {}\mRightarrow{}  (cosetTC(a)  \msubseteq{}  s))



Date html generated: 2018_07_29-AM-10_03_11
Last ObjectModification: 2018_07_18-PM-08_43_25

Theory : constructive!set!theory


Home Index