Nuprl Lemma : cosetTC-least
∀a,s:coSet{i:l}.  ((a ⊆ s) 
⇒ transitive-set(s) 
⇒ (cosetTC(a) ⊆ s))
Proof
Definitions occuring in Statement : 
transitive-set: transitive-set(s)
, 
setsubset: (a ⊆ b)
, 
cosetTC: cosetTC(a)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
nequal: a ≠ b ∈ T 
, 
allsetmem: ∀a∈A.P[a]
, 
setsubset: (a ⊆ b)
, 
set-dom: set-dom(s)
, 
coW-dom: coW-dom(a.B[a];w)
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
set-item: set-item(s;x)
, 
pi2: snd(t)
, 
coW-item: coW-item(w;b)
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
coPath-at: coPath-at(n;w;p)
, 
coPath: coPath(a.B[a];w;n)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat: ℕ
, 
false: False
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
copath-at: copath-at(w;p)
, 
pi1: fst(t)
, 
copath-length: copath-length(p)
, 
copath: copath(a.B[a];w)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
coSet: coSet{i:l}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
cosetTC: cosetTC(a)
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
transitive-set-iff, 
set-item_wf, 
decidable__lt, 
set-dom_wf, 
int_subtype_base, 
decidable__equal_int, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
top_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
nat_wf, 
primrec-wf2, 
set_wf, 
coPath-at_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
all_wf, 
subtract_wf, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
coPath_wf, 
less_than_wf, 
coSet_wf, 
setsubset_wf, 
transitive-set_wf, 
setmem_wf, 
subtype_rel_self, 
copath-at_wf, 
setmem_functionality_1, 
setmem-mk-coset, 
setsubset-iff, 
cosetTC_functionality_subset, 
cosetTC_wf, 
setsubset_transitivity
Rules used in proof : 
promote_hyp, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
functionEquality, 
independent_pairFormation, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
dependent_set_memberEquality, 
cumulativity, 
natural_numberEquality, 
imageElimination, 
instantiate, 
applyEquality, 
rename, 
setElimination, 
lambdaEquality, 
universeEquality, 
because_Cache, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
productElimination, 
independent_functionElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a,s:coSet\{i:l\}.    ((a  \msubseteq{}  s)  {}\mRightarrow{}  transitive-set(s)  {}\mRightarrow{}  (cosetTC(a)  \msubseteq{}  s))
Date html generated:
2018_07_29-AM-10_03_11
Last ObjectModification:
2018_07_18-PM-08_43_25
Theory : constructive!set!theory
Home
Index