Nuprl Lemma : setsubset_transitivity
∀a,b,c:coSet{i:l}.  ((a ⊆ b) ⇒ (b ⊆ c) ⇒ (a ⊆ c))
Proof
Definitions occuring in Statement : 
setsubset: (a ⊆ b), 
coSet: coSet{i:l}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
guard: {T}, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
setsubset_wf, 
setsubset-iff, 
coSet_wf, 
all_wf, 
setmem_wf
Rules used in proof : 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
impliesFunctionality, 
addLevel, 
functionEquality, 
cumulativity, 
lambdaEquality, 
sqequalRule, 
instantiate, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a,b,c:coSet\{i:l\}.    ((a  \msubseteq{}  b)  {}\mRightarrow{}  (b  \msubseteq{}  c)  {}\mRightarrow{}  (a  \msubseteq{}  c))
Date html generated:
2018_07_29-AM-10_01_26
Last ObjectModification:
2018_07_18-PM-01_30_38
Theory : constructive!set!theory
Home
Index