Nuprl Lemma : setsubset_transitivity

a,b,c:coSet{i:l}.  ((a ⊆ b)  (b ⊆ c)  (a ⊆ c))


Proof




Definitions occuring in Statement :  setsubset: (a ⊆ b) coSet: coSet{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  guard: {T} rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  setsubset_wf setsubset-iff coSet_wf all_wf setmem_wf
Rules used in proof :  independent_functionElimination productElimination dependent_functionElimination impliesFunctionality addLevel functionEquality cumulativity lambdaEquality sqequalRule instantiate because_Cache hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a,b,c:coSet\{i:l\}.    ((a  \msubseteq{}  b)  {}\mRightarrow{}  (b  \msubseteq{}  c)  {}\mRightarrow{}  (a  \msubseteq{}  c))



Date html generated: 2018_07_29-AM-10_01_26
Last ObjectModification: 2018_07_18-PM-01_30_38

Theory : constructive!set!theory


Home Index