Nuprl Lemma : cosetTC_functionality_subset
∀a,b:coSet{i:l}.  ((a ⊆ b) ⇒ (cosetTC(a) ⊆ cosetTC(b)))
Proof
Definitions occuring in Statement : 
setsubset: (a ⊆ b), 
cosetTC: cosetTC(a), 
coSet: coSet{i:l}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
pi2: snd(t), 
coW-item: coW-item(w;b), 
eq_int: (i =z j), 
subtract: n - m, 
sq_type: SQType(T), 
coWmem: coWmem(a.B[a];z;w), 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
coPath: coPath(a.B[a];w;n), 
coPath-at: coPath-at(n;w;p), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
uimplies: b supposing a, 
or: P ∨ Q, 
decidable: Dec(P), 
false: False, 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
setmem: (x ∈ s), 
seteq: seteq(s1;s2), 
nat: ℕ, 
copath-at: copath-at(w;p), 
pi1: fst(t), 
copath-length: copath-length(p), 
copath: copath(a.B[a];w), 
subtype_rel: A ⊆r B, 
coSet: coSet{i:l}, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
guard: {T}, 
exists: ∃x:A. B[x], 
top: Top, 
cosetTC: cosetTC(a), 
prop: ℙ, 
rev_implies: P ⇐ Q, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
coW-equiv-iff, 
decidable__lt, 
subtype_base_sq, 
decidable__equal_int, 
coW-item-coWmem, 
equal_wf, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_eq_int, 
eqtt_to_assert, 
uiff_transitivity, 
coW-item_wf, 
coW-dom_wf, 
not_wf, 
bnot_wf, 
top_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
assert_wf, 
int_subtype_base, 
equal-wf-base, 
bool_wf, 
eq_int_wf, 
primrec-wf2, 
set_wf, 
coPath-at_wf, 
coW-equiv_wf, 
exists_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
coWmem_wf, 
coW_wf, 
all_wf, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_wf, 
copath-length_wf, 
less_than_wf, 
coPath_wf, 
subtype_rel_self, 
seteq_wf, 
copath-at_wf, 
seteq_transitivity, 
setmem-mk-coset, 
coSet_wf, 
setsubset_wf, 
setmem_wf, 
cosetTC_wf, 
setsubset-iff
Rules used in proof : 
spreadEquality, 
impliesFunctionality, 
equalityElimination, 
productEquality, 
equalitySymmetry, 
equalityTransitivity, 
baseClosed, 
closedConclusion, 
baseApply, 
functionEquality, 
independent_pairFormation, 
intEquality, 
int_eqEquality, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
imageElimination, 
cumulativity, 
natural_numberEquality, 
dependent_pairEquality, 
dependent_set_memberEquality, 
instantiate, 
applyEquality, 
rename, 
setElimination, 
lambdaEquality, 
universeEquality, 
dependent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
because_Cache, 
isectElimination, 
independent_functionElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a,b:coSet\{i:l\}.    ((a  \msubseteq{}  b)  {}\mRightarrow{}  (cosetTC(a)  \msubseteq{}  cosetTC(b)))
Date html generated:
2018_07_29-AM-10_01_34
Last ObjectModification:
2018_07_18-PM-05_56_56
Theory : constructive!set!theory
Home
Index