Nuprl Lemma : cosetTC_functionality_subset

a,b:coSet{i:l}.  ((a ⊆ b)  (cosetTC(a) ⊆ cosetTC(b)))


Proof




Definitions occuring in Statement :  setsubset: (a ⊆ b) cosetTC: cosetTC(a) coSet: coSet{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  pi2: snd(t) coW-item: coW-item(w;b) eq_int: (i =z j) subtract: m sq_type: SQType(T) coWmem: coWmem(a.B[a];z;w) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 coPath: coPath(a.B[a];w;n) coPath-at: coPath-at(n;w;p) satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) false: False less_than': less_than'(a;b) squash: T less_than: a < b setmem: (x ∈ s) seteq: seteq(s1;s2) nat: copath-at: copath-at(w;p) pi1: fst(t) copath-length: copath-length(p) copath: copath(a.B[a];w) subtype_rel: A ⊆B coSet: coSet{i:l} so_apply: x[s] so_lambda: λ2x.t[x] guard: {T} exists: x:A. B[x] top: Top cosetTC: cosetTC(a) prop: rev_implies:  Q uall: [x:A]. B[x] and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  coW-equiv-iff decidable__lt subtype_base_sq decidable__equal_int coW-item-coWmem equal_wf assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity coW-item_wf coW-dom_wf not_wf bnot_wf top_wf int_formula_prop_eq_lemma intformeq_wf assert_wf int_subtype_base equal-wf-base bool_wf eq_int_wf primrec-wf2 set_wf coPath-at_wf coW-equiv_wf exists_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf coWmem_wf coW_wf all_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_wf copath-length_wf less_than_wf coPath_wf subtype_rel_self seteq_wf copath-at_wf seteq_transitivity setmem-mk-coset coSet_wf setsubset_wf setmem_wf cosetTC_wf setsubset-iff
Rules used in proof :  spreadEquality impliesFunctionality equalityElimination productEquality equalitySymmetry equalityTransitivity baseClosed closedConclusion baseApply functionEquality independent_pairFormation intEquality int_eqEquality approximateComputation independent_isectElimination unionElimination imageElimination cumulativity natural_numberEquality dependent_pairEquality dependent_set_memberEquality instantiate applyEquality rename setElimination lambdaEquality universeEquality dependent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality because_Cache isectElimination independent_functionElimination productElimination hypothesis hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a,b:coSet\{i:l\}.    ((a  \msubseteq{}  b)  {}\mRightarrow{}  (cosetTC(a)  \msubseteq{}  cosetTC(b)))



Date html generated: 2018_07_29-AM-10_01_34
Last ObjectModification: 2018_07_18-PM-05_56_56

Theory : constructive!set!theory


Home Index