Nuprl Lemma : coW-item-coWmem
∀[A:𝕌']. ∀B:A ⟶ Type. ∀w:coW(A;a.B[a]). ∀t:coW-dom(a.B[a];w).  coWmem(a.B[a];coW-item(w;t);w)
Proof
Definitions occuring in Statement : 
coWmem: coWmem(a.B[a];z;w)
, 
coW-item: coW-item(w;b)
, 
coW-dom: coW-dom(a.B[a];w)
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
coWmem: coWmem(a.B[a];z;w)
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coW-equiv_weakening, 
coW_wf, 
coW-dom_wf, 
coW-item_wf, 
coW-equiv_wf
Rules used in proof : 
independent_isectElimination, 
dependent_functionElimination, 
universeEquality, 
functionEquality, 
cumulativity, 
instantiate, 
hypothesis, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
hypothesisEquality, 
dependent_pairFormation, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w:coW(A;a.B[a]).  \mforall{}t:coW-dom(a.B[a];w).    coWmem(a.B[a];coW-item(w;t);w)
Date html generated:
2018_07_25-PM-01_48_13
Last ObjectModification:
2018_06_20-PM-05_57_58
Theory : co-recursion
Home
Index