Nuprl Lemma : coW-item-coWmem

[A:𝕌']. ∀B:A ⟶ Type. ∀w:coW(A;a.B[a]). ∀t:coW-dom(a.B[a];w).  coWmem(a.B[a];coW-item(w;t);w)


Proof




Definitions occuring in Statement :  coWmem: coWmem(a.B[a];z;w) coW-item: coW-item(w;b) coW-dom: coW-dom(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] prop: member: t ∈ T exists: x:A. B[x] coWmem: coWmem(a.B[a];z;w) all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  coW-equiv_weakening coW_wf coW-dom_wf coW-item_wf coW-equiv_wf
Rules used in proof :  independent_isectElimination dependent_functionElimination universeEquality functionEquality cumulativity instantiate hypothesis applyEquality lambdaEquality sqequalRule thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut hypothesisEquality dependent_pairFormation lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w:coW(A;a.B[a]).  \mforall{}t:coW-dom(a.B[a];w).    coWmem(a.B[a];coW-item(w;t);w)



Date html generated: 2018_07_25-PM-01_48_13
Last ObjectModification: 2018_06_20-PM-05_57_58

Theory : co-recursion


Home Index