Nuprl Lemma : orderedpair-snd_wf2
∀[pr:Set{i:l}]. (snd(pr) ∈ Set{i:l})
Proof
Definitions occuring in Statement : 
orderedpair-snd: snd(pr)
, 
Set: Set{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
orderedpair-snd: snd(pr)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
Set_wf, 
orderedpair-snds_wf2, 
singleitem_wf2
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[pr:Set\{i:l\}].  (snd(pr)  \mmember{}  Set\{i:l\})
Date html generated:
2018_07_29-AM-10_02_28
Last ObjectModification:
2018_07_18-PM-03_07_55
Theory : constructive!set!theory
Home
Index