Nuprl Lemma : orderedpair-snds_wf2

[pr:Set{i:l}]. (snds(pr) ∈ Set{i:l})


Proof




Definitions occuring in Statement :  orderedpair-snds: snds(pr) Set: Set{i:l} uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uimplies: supposing a so_apply: x[s] prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] orderedpair-snds: snds(pr) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  unionset_wf setmem_wf coSet_wf Set_wf subtype_rel_set orderedpair-fst_wf orderedpairset_wf set-subtype-coSet seteq_wf unionset_wf2 sub-set_wf2
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality setEquality independent_isectElimination cumulativity instantiate because_Cache applyEquality lambdaEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[pr:Set\{i:l\}].  (snds(pr)  \mmember{}  Set\{i:l\})



Date html generated: 2018_07_29-AM-10_02_15
Last ObjectModification: 2018_07_18-PM-03_05_42

Theory : constructive!set!theory


Home Index