Nuprl Lemma : orderedpair-snds_wf2
∀[pr:Set{i:l}]. (snds(pr) ∈ Set{i:l})
Proof
Definitions occuring in Statement : 
orderedpair-snds: snds(pr)
, 
Set: Set{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uimplies: b supposing a
, 
so_apply: x[s]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
orderedpair-snds: snds(pr)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
unionset_wf, 
setmem_wf, 
coSet_wf, 
Set_wf, 
subtype_rel_set, 
orderedpair-fst_wf, 
orderedpairset_wf, 
set-subtype-coSet, 
seteq_wf, 
unionset_wf2, 
sub-set_wf2
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
setEquality, 
independent_isectElimination, 
cumulativity, 
instantiate, 
because_Cache, 
applyEquality, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[pr:Set\{i:l\}].  (snds(pr)  \mmember{}  Set\{i:l\})
Date html generated:
2018_07_29-AM-10_02_15
Last ObjectModification:
2018_07_18-PM-03_05_42
Theory : constructive!set!theory
Home
Index