Nuprl Lemma : unionset_wf

[s:coSet{i:l}]. (⋃(s) ∈ coSet{i:l})


Proof




Definitions occuring in Statement :  unionset: (s) coSet: coSet{i:l} uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] prop: so_lambda: λ2x.t[x] unionset: (s) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  setmem_wf coSet_wf setunionfun_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality cumulativity setEquality hypothesis rename setElimination lambdaEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[s:coSet\{i:l\}].  (\mcup{}(s)  \mmember{}  coSet\{i:l\})



Date html generated: 2018_07_29-AM-09_52_57
Last ObjectModification: 2018_07_18-PM-02_41_34

Theory : constructive!set!theory


Home Index