Nuprl Lemma : setunionfun_wf
∀[s:coSet{i:l}]. ∀[f:{x:coSet{i:l}| (x ∈ s)} ⟶ coSet{i:l}]. ( ⋃x∈s.f[x] ∈ coSet{i:l})
Proof
Definitions occuring in Statement :
setunionfun: ⋃x∈s.f[x]
,
setmem: (x ∈ s)
,
coSet: coSet{i:l}
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
mk-coset: mk-coset(T;f)
,
setunionfun: ⋃x∈s.f[x]
,
subtype_rel: A ⊆r B
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
set-item_wf,
setmem-coset,
setmem_wf,
coSet_wf,
set-dom_wf,
mk-coset_wf,
coSet_subtype,
subtype_coSet
Rules used in proof :
isect_memberEquality,
functionEquality,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
dependent_set_memberEquality,
dependent_functionElimination,
universeEquality,
lambdaEquality,
because_Cache,
setEquality,
functionExtensionality,
cumulativity,
productEquality,
isectElimination,
thin,
productElimination,
sqequalRule,
sqequalHypSubstitution,
applyEquality,
hypothesisEquality,
hypothesis,
extract_by_obid,
hypothesis_subsumption,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[s:coSet\{i:l\}]. \mforall{}[f:\{x:coSet\{i:l\}| (x \mmember{} s)\} {}\mrightarrow{} coSet\{i:l\}]. ( \mcup{}x\mmember{}s.f[x] \mmember{} coSet\{i:l\})
Date html generated:
2018_07_29-AM-09_52_46
Last ObjectModification:
2018_07_18-PM-02_32_59
Theory : constructive!set!theory
Home
Index