Nuprl Lemma : sub-set_wf2

[s:Set{i:l}]. ∀[P:{a:Set{i:l}| (a ∈ s)}  ⟶ ℙ].  ({a ∈ P[a]} ∈ Set{i:l})


Proof




Definitions occuring in Statement :  sub-set: {a ∈ P[a]} Set: Set{i:l} setmem: (x ∈ s) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  pi1: fst(t) prop: all: x:A. B[x] so_apply: x[s] Wsup: Wsup(a;b) mk-set: f"(T) subtype_rel: A ⊆B sub-set: {a ∈ P[a]} member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  set-subtype-coSet Set_wf setmem_wf setmem-mk-set mk-set_wf set-subtype subtype-set
Rules used in proof :  isect_memberEquality universeEquality cumulativity setEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality functionExtensionality lambdaEquality dependent_set_memberEquality dependent_functionElimination because_Cache productEquality isectElimination rename thin productElimination sqequalHypSubstitution applyEquality hypothesisEquality hypothesis extract_by_obid hypothesis_subsumption sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[s:Set\{i:l\}].  \mforall{}[P:\{a:Set\{i:l\}|  (a  \mmember{}  s)\}    {}\mrightarrow{}  \mBbbP{}].    (\{a  \mmember{}  s  |  P[a]\}  \mmember{}  Set\{i:l\})



Date html generated: 2018_07_29-AM-09_52_22
Last ObjectModification: 2018_07_18-AM-10_18_35

Theory : constructive!set!theory


Home Index