Nuprl Lemma : orderedpairset_functionality

a,b,a',b':coSet{i:l}.  (seteq(a;a')  seteq(b;b')  seteq((a,b);(a',b')))


Proof




Definitions occuring in Statement :  orderedpairset: (a,b) seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  prop: rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] member: t ∈ T orderedpairset: (a,b) implies:  Q all: x:A. B[x]
Lemmas referenced :  coSet_wf seteq_wf singleset_functionality seteq_weakening pairset_functionality singleset_wf pairset_wf seteq_functionality
Rules used in proof :  productElimination independent_functionElimination because_Cache hypothesis hypothesisEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a,b,a',b':coSet\{i:l\}.    (seteq(a;a')  {}\mRightarrow{}  seteq(b;b')  {}\mRightarrow{}  seteq((a,b);(a',b')))



Date html generated: 2018_07_29-AM-09_59_48
Last ObjectModification: 2018_07_18-AM-11_15_19

Theory : constructive!set!theory


Home Index