Nuprl Lemma : plus-set-transitive
∀a:coSet{i:l}. (transitive-set(a) ⇒ transitive-set((a)+))
Proof
Definitions occuring in Statement : 
transitive-set: transitive-set(s), 
plus-set: (a)+, 
coSet: coSet{i:l}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
seteq_wf, 
setmem_functionality, 
seteq_weakening, 
seteq_inversion, 
setmem_wf, 
coSet_wf, 
setsubset-iff, 
setmem-plus-set, 
plus-set_wf, 
setsubset_wf, 
transitive-set-iff, 
transitive-set_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
inlFormation_alt, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
productElimination, 
inhabitedIsType, 
sqequalRule, 
unionIsType, 
functionIsType
Latex:
\mforall{}a:coSet\{i:l\}.  (transitive-set(a)  {}\mRightarrow{}  transitive-set((a)+))
 Date html generated: 
2020_05_20-PM-01_18_46
 Last ObjectModification: 
2020_01_06-PM-01_24_15
Theory : constructive!set!theory
Home
Index