Nuprl Lemma : plus-set-transitive
∀a:coSet{i:l}. (transitive-set(a) 
⇒ transitive-set((a)+))
Proof
Definitions occuring in Statement : 
transitive-set: transitive-set(s)
, 
plus-set: (a)+
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
seteq_wf, 
setmem_functionality, 
seteq_weakening, 
seteq_inversion, 
setmem_wf, 
coSet_wf, 
setsubset-iff, 
setmem-plus-set, 
plus-set_wf, 
setsubset_wf, 
transitive-set-iff, 
transitive-set_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
inlFormation_alt, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
productElimination, 
inhabitedIsType, 
sqequalRule, 
unionIsType, 
functionIsType
Latex:
\mforall{}a:coSet\{i:l\}.  (transitive-set(a)  {}\mRightarrow{}  transitive-set((a)+))
Date html generated:
2020_05_20-PM-01_18_46
Last ObjectModification:
2020_01_06-PM-01_24_15
Theory : constructive!set!theory
Home
Index