Nuprl Lemma : setmem-plus-set

a,x:coSet{i:l}.  ((x ∈ (a)+) ⇐⇒ (x ∈ a) ∨ seteq(x;a))


Proof




Definitions occuring in Statement :  plus-set: (a)+ setmem: (x ∈ s) seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q
Definitions unfolded in proof :  rev_implies:  Q uall: [x:A]. B[x] prop: member: t ∈ T guard: {T} or: P ∨ Q implies:  Q and: P ∧ Q iff: ⇐⇒ Q plus-set: (a)+ all: x:A. B[x]
Lemmas referenced :  coSet_wf iff_wf set-add_wf setmem-singleset singleset_wf setmem-set-add or_wf seteq_wf setmem_wf
Rules used in proof :  impliesFunctionality orFunctionality dependent_functionElimination independent_functionElimination productElimination addLevel because_Cache inlFormation hypothesisEquality isectElimination extract_by_obid introduction inrFormation hypothesis sqequalRule thin unionElimination sqequalHypSubstitution independent_pairFormation cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a,x:coSet\{i:l\}.    ((x  \mmember{}  (a)+)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  a)  \mvee{}  seteq(x;a))



Date html generated: 2018_07_29-AM-10_00_12
Last ObjectModification: 2018_07_18-PM-01_33_43

Theory : constructive!set!theory


Home Index