Nuprl Lemma : setmem-plus-set
∀a,x:coSet{i:l}.  ((x ∈ (a)+) ⇐⇒ (x ∈ a) ∨ seteq(x;a))
Proof
Definitions occuring in Statement : 
plus-set: (a)+, 
setmem: (x ∈ s), 
seteq: seteq(s1;s2), 
coSet: coSet{i:l}, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
or: P ∨ Q
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
guard: {T}, 
or: P ∨ Q, 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
plus-set: (a)+, 
all: ∀x:A. B[x]
Lemmas referenced : 
coSet_wf, 
iff_wf, 
set-add_wf, 
setmem-singleset, 
singleset_wf, 
setmem-set-add, 
or_wf, 
seteq_wf, 
setmem_wf
Rules used in proof : 
impliesFunctionality, 
orFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
addLevel, 
because_Cache, 
inlFormation, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
inrFormation, 
hypothesis, 
sqequalRule, 
thin, 
unionElimination, 
sqequalHypSubstitution, 
independent_pairFormation, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a,x:coSet\{i:l\}.    ((x  \mmember{}  (a)+)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  a)  \mvee{}  seteq(x;a))
 Date html generated: 
2018_07_29-AM-10_00_12
 Last ObjectModification: 
2018_07_18-PM-01_33_43
Theory : constructive!set!theory
Home
Index